Advertisement

Journal of High Energy Physics

, 2010:105 | Cite as

Visible effects of invisible Hidden Valley radiation

  • Lisa Carloni
  • Torbjörn Sjöstrand
Article

Abstract

Assuming there is a new gauge group in a Hidden Valley, and a new type of radiation, can we observe it through its effect on the kinematic distributions of recoiling visible particles? Specifically, what are the collider signatures of radiation in a hidden sector? We address these questions using a generic SU(N)-like Hidden Valley model that we implement in Pythia. We find that in both the e + e and the LHC cases the kinematic distributions of the visible particles can be significantly affected by the valley radiation. Without a proper understanding of such effects, inferred masses of “communicators” and of invisible particles can be substantially off.

Keywords

Phenomenological Models 

References

  1. [1]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  2. [2]
    H. Georgi, Unparticle Physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [SPIRES]. ADSCrossRefGoogle Scholar
  3. [3]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [SPIRES].
  6. [6]
    K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [SPIRES].ADSGoogle Scholar
  7. [7]
    M.J. Strassler, Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys, arXiv:0801.0629 [SPIRES].
  8. [8]
    J. Kang and M.A. Luty, Macroscopic Strings and ’Quirks’ at Colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar
  10. [10]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES]. ADSGoogle Scholar
  11. [11]
    D0 collaboration, V.M. Abazov et al., Search for scalar leptoquarks in the acoplanar jet topology in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Lett. B 640 (2006) 230 [hep-ex/0607009] [SPIRES]. ADSGoogle Scholar
  12. [12]
    D0 collaboration, V.M. Abazov et al., Search for third-generation leptoquarks in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Rev. Lett. 99 (2007) 061801 [arXiv:0705.0812] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  15. [15]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Brooijmans et al., New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 - New Physics Working Group, arXiv:1005.1229 [SPIRES].
  17. [17]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  18. [18]
    D.R. Tovey, Measuring the SUSY mass scale at the LHC, Phys. Lett. B 498 (2001) 1 [hep-ph/0006276] [SPIRES].ADSGoogle Scholar
  19. [19]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino Stransverse Mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and MT2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  22. [22]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
  24. [24]
    H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella and B. McElrath, Mass Determination in SUSY-like Events with Missing Energy, JHEP 12 (2007) 076 [arXiv:0707.0030] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han and B. McElrath, Accurate Mass Determinations in Decay Chains with Missing Energy, Phys. Rev. Lett. 100 (2008) 252001 [arXiv:0802.4290] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    B.K. Gjelsten, D.J. Miller, 2 and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP 12 (2004) 003 [hep-ph/0410303] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    D. Costanzo and D.R. Tovey, Supersymmetric particle mass measurement with invariant mass correlations, JHEP 04 (2009) 084 [arXiv:0902.2331] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M. Burns, K.T. Matchev and M. Park, Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy, JHEP 05 (2009) 094 [arXiv:0903.4371] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP 08 (2009) 104 [arXiv:0906.2417] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev. D 71 (2005) 035008 [hep-ph/0410160] [SPIRES].ADSGoogle Scholar
  31. [31]
    M.M. Nojiri, G. Polesello and D.R. Tovey, A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays, JHEP 05 (2008) 014 [arXiv:0712.2718] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    B. Webber, Mass determination in sequential particle decay chains, JHEP 09 (2009) 124 [arXiv:0907.5307] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    A.J. Barr and C.G. Lester, A Review of the Mass Measurement Techniques proposed for the Large Hadron Collider, arXiv:1004.2732 [SPIRES].
  34. [34]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable \( {M_{{T_2}}} \), Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations