Journal of High Energy Physics

, 2010:73 | Cite as

Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III

  • Szabolcs BorsányiEmail author
  • Zoltán Fodor
  • Christian Hoelbling
  • Sándor D. Katz
  • Stefan Krieg
  • Claudia Ratti
  • Kálmán K. Szabó


The present paper concludes our investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices (N t = 16) and we work again with physical quark masses. The new results on this broad cross-over are in complete agreement with our earlier ones. We compare our findings with the published results of the hotQCD collaboration. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. The findings of the hotQCD collaboration can be recovered by using a distorted spectrum which takes into account lattice discretization artifacts and heavier than physical quark masses. This analysis provides a simple explanation for the observed discrepancy in the transition temperatures between our and the hotQCD collaborations.


Confinement Lattice QCD 


  1. [1]
    M. Cheng et al., The transition temperature in QCD, Phys. Rev. D 74 (2006) 054507 [hep-lat/0608013] [SPIRES].ADSGoogle Scholar
  2. [2]
    HotQCD collaboration, C.E. Detar and R. Gupta, Toward a precise determination of T c with 2 + 1 flavors of quarks, PoS(LATTICE 2007)179 [arXiv:0710.1655] [SPIRES].
  3. [3]
    F. Karsch, Recent lattice results on finite temerature and density QCD, part II, PoS(LATTICE 2007)015 [arXiv:0711.0661] [SPIRES].
  4. [4]
    RBC collaboration, F. Karsch, Equation of state and more from lattice regularized QCD, J. Phys. G 35 (2008) 104096 [arXiv:0804.4148] [SPIRES].ADSGoogle Scholar
  5. [5]
    A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Cheng et al., Equation of state for physical quark masses, Phys. Rev. D 81 (2010) 054504 [arXiv:0911.2215] [SPIRES].ADSGoogle Scholar
  7. [7]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES]. ADSGoogle Scholar
  8. [8]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    HotQCD collaboration, A. Bazavov and P. Petreczky, First results on QCD thermodynamics with HISQ action, PoS(LAT2009)163 [arXiv:0912.5421] [SPIRES].
  11. [11]
    HotQCD collaboration, A. Bazavov and P. Petreczky, Deconfinement and chiral transition with the highly improved staggered quark (HISQ) action, J. Phys. Conf. Ser. 230 (2010) 012014 [arXiv:1005.1131] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    Z. Fodor, QCD thermodynamics, PoS(LATTICE 2007)011 [arXiv:0711.0336] [SPIRES].
  13. [13]
    P. Huovinen and P. Petreczky, QCD equation of state and hadron resonance gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [SPIRES].ADSGoogle Scholar
  14. [14]
    P. Huovinen and P. Petreczky, On fluctuations of conserved charges: lattice results versus hadron resonance gas, J. Phys. Conf. Ser. 230 (2010) 012012 [arXiv:1005.0324] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    B. Spang, Thermodynamic and transport properties of water and steam,
  16. [16]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, arXiv:1007.2580 [SPIRES].
  17. [17]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [SPIRES].ADSGoogle Scholar
  19. [19]
    WHOT-QCD collaboration, S. Ejiri et al., Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with Wilson quark action, Phys. Rev. D 82 (2010) 014508 [arXiv:0909.2121] [SPIRES].ADSGoogle Scholar
  20. [20]
    V.G. Bornyakov et al., Probing the finite temperature phase transition with N f = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [SPIRES].ADSGoogle Scholar
  21. [21]
    K. Kanaya et al., Towards the equation of state in 2 + 1 flavor QCD with improved Wilson quarks in the fixed scale approach, arXiv:0910.5284 [SPIRES].
  22. [22]
    M.F.L. Golterman, Staggered mesons, Nucl. Phys. B 273 (1986) 663 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.F.L. Golterman, Irreducible representations of the staggered fermion symmetry group, Nucl. Phys. B 278 (1986) 417 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Bazavov et al., Full nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [SPIRES].ADSGoogle Scholar
  26. [26]
    F. Karsch, K. Redlich and A. Tawfik, Thermodynamics at non-zero baryon number density: a comparison of lattice and hadron resonance gas model calculations, Phys. Lett. B 571 (2003) 67 [hep-ph/0306208] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Tawfik, The QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations, Phys. Rev. D 71 (2005) 054502 [hep-ph/0412336] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Ejiri, F. Karsch and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett. B 633 (2006) 275 [hep-ph/0509051] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Cheng et al., Baryon number, strangeness and electric charge fluctuations in QCD at high temperature, Phys. Rev. D 79 (2009) 074505 [arXiv:0811.1006] [SPIRES].ADSGoogle Scholar
  30. [30]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Dashen, S.-K. Ma and H.J. Bernstein, S matrix formulation of statistical mechanics, Phys. Rev. 187 (1969) 345 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    R. Venugopalan and M. Prakash, Thermal properties of interacting hadrons, Nucl. Phys. A 546 (1992) 718 [SPIRES].ADSGoogle Scholar
  33. [33]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  34. [34]
    J. Martin-Camalich, L.S. Geng and M.J.V. Vacas, The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory, arXiv:1003.1929 [SPIRES].
  35. [35]
    P. Gerber and H. Leutwyler, Hadrons below the chiral phase transition, Nucl. Phys. B 321 (1989) 387 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    C. Aubin et al., Light hadrons with improved staggered quarks: approaching the continuum limit, Phys. Rev. D 70 (2004) 094505 [hep-lat/0402030] [SPIRES].ADSGoogle Scholar
  37. [37]
    C.W. Bernard et al., The QCD spectrum with three quark flavors, Phys. Rev. D 64 (2001) 054506 [hep-lat/0104002] [SPIRES].ADSGoogle Scholar
  38. [38]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    A. Tawfik and D. Toublan, Quark antiquark condensates in the hadronic phase, Phys. Lett. B 623 (2005) 48 [hep-ph/0505152] [SPIRES].ADSGoogle Scholar
  40. [40]
    M. Jamin, Flavour-symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation, Phys. Lett. B 538 (2002) 71 [hep-ph/0201174] [SPIRES].ADSGoogle Scholar
  41. [41]
    C. Bernard, M. Golterman, Y. Shamir and S.R. Sharpe, ’T Hooft vertices, partial quenching and rooted staggered QCD, Phys. Rev. D 77 (2008) 114504 [arXiv:0711.0696] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Szabolcs Borsányi
    • 1
    Email author
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Christian Hoelbling
    • 1
  • Sándor D. Katz
    • 3
  • Stefan Krieg
    • 1
    • 4
  • Claudia Ratti
    • 1
  • Kálmán K. Szabó
    • 1
  1. 1.Department of PhysicsBergische Universität WuppertalWuppertalGermany
  2. 2.Jülich Supercomputing CenterForschungszentrum JülichJülichGermany
  3. 3.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary
  4. 4.Center for Theoretical PhysicsMITCambridgeU.S.A.

Personalised recommendations