Journal of High Energy Physics

, 2010:40 | Cite as

μe conversion in the Littlest Higgs model with T-parity



Little Higgs models provide a natural explanation of the little hierarchy between the electroweak scale and a few TeV scale, where new physics is expected. Under the same inspiring naturalness arguments, this work completes a previous study on lepton flavor-changing processes in the Littlest Higgs model with T-parity exploring the channel that will eventually turn out to be the most sensitive, μ − e conversion in nuclei. All one-loop contributions are carefully taken into account, results for the most relevant nuclei are provided and a discussion of the influence of the quark mixing is included. The results for the Ti nucleus are in good agreement with earlier work by Blanke et al., where a degenerate mirror quark sector was assumed. The conclusion is that, although this particular model reduces the tension with electroweak precision tests, if the restrictions on the parameter space derived from lepton flavor violation are taken seriously, the degree of fine tuning necessary to meet these constraints also disfavors this model.


Rare Decays Beyond Standard Model 


  1. [1]
    R. N. Mohapatra and P. B. Pal, Massive neutrinos in physics and astrophysics. Second edition, World Sci. Lect. Notes Phys. 60 (1998) 1 [World Sci. Lect. Notes Phys. 72 (2004) 1] [SPIRES].Google Scholar
  2. [2]
    A.J. Buras, Flavour Theory: 2009, PoS(EPS-HEP 2009)024 [arXiv:0910.1032] [SPIRES].
  3. [3]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  4. [4]
    MEG collaboration, S. Ritt, Status of the MEG expriment μ, Nucl. Phys. Proc. Suppl. 162 (2006) 279 [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    T. Mori, MEG: The experiment to search for μ, Nucl. Phys. Proc. Suppl. 169 (2007) 166 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Kuno, PRISM/PRIME, Nucl. Phys. Proc. Suppl. 149 (2005) 376 [SPIRES]. ADSCrossRefGoogle Scholar
  7. [7]
    M. Bona et al., SuperB: A high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].
  8. [8]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    M. Schmaltz and D. Tucker-Smith, Little higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    T. Han, H.E. Logan and L.-T. Wang, Smoking-gun signatures of little Higgs models, JHEP 01 (2006) 099 [hep-ph/0506313] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES].ADSGoogle Scholar
  15. [15]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [SPIRES].ADSGoogle Scholar
  16. [16]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [SPIRES].ADSGoogle Scholar
  17. [17]
    W. Kilian and J. Reuter, The low-energy structure of little Higgs models, Phys. Rev. D 70 (2004) 015004 [hep-ph/0311095] [SPIRES].ADSGoogle Scholar
  18. [18]
    J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    M.-C. Chen, Models of little Higgs and electroweak precision tests, Mod. Phys. Lett. A 21 (2006) 621 [hep-ph/0601126] [SPIRES].ADSGoogle Scholar
  20. [20]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged lepton flavour violation and (g − 2)μ in the littlest Higgs model with T-parity: a clear distinction from supersymmetry, JHEP 05 (2007) 013 [hep-ph/0702136] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    F. del Aguila, J.I. Illana and M.D. Jenkins, Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [SPIRES]. CrossRefGoogle Scholar
  25. [25]
    S.R. Choudhury, A.S. Cornell, A. Deandrea, N. Gaur and A. Goyal, Lepton flavour violation in the little Higgs model, Phys. Rev. D 75 (2007) 055011 [hep-ph/0612327] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the littlest higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [SPIRES].Google Scholar
  27. [27]
    T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [SPIRES]. ADSGoogle Scholar
  28. [28]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization framework, Phys. Rev. D 22 (1980) 971 [SPIRES].ADSGoogle Scholar
  29. [29]
    W.F.L. Hollik, Radiative corrections in the Standard Model and their role for precision tests of the electroweak theory, Fortschr. Phys. 38 (1990) 165 [SPIRES].CrossRefGoogle Scholar
  30. [30]
    J. Bernabeu, A. Pich and A. Santamaria, \( \Gamma \left( {Z \to B\bar{B}} \right) \) : A signature of hard mass terms for a heavy top, Phys. Lett. B 200 (1988) 569 [SPIRES].ADSGoogle Scholar
  31. [31]
    F. del Águila, J.I. Illana and M.D. Jenkins, work in preparation.Google Scholar
  32. [32]
    J.I. Illana and M.D. Jenkins, Lepton flavor violation in little Higgs models, Acta Phys. Polon. B 40 (2009) 3143 [arXiv:0911.2173] [SPIRES].ADSGoogle Scholar
  33. [33]
    K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [SPIRES]. ADSGoogle Scholar
  34. [34]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguins, arXiv:1004.2037 [SPIRES].
  36. [36]
    M. Blanke et al., Rare and CP-violating K and B decays in the littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Blanke et al., Another look at the flavour structure of the littlest higgs model with T-parity, Phys. Lett. B 646 (2007) 253 [hep-ph/0609284] [SPIRES].ADSGoogle Scholar
  39. [39]
    J. Hubisz, S.J. Lee and G. Paz, The flavor of a little Higgs with T-parity, JHEP 06 (2006) 041 [hep-ph/0512169] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  41. [41]
    J.I. Illana and T. Riemann, Charged lepton flavour violation from massive neutrinos in Z decays, Phys. Rev. D 63 (2001) 053004 [hep-ph/0010193] [SPIRES].ADSGoogle Scholar
  42. [42]
    J.I. Illana and M. Masip, Lepton flavor violation in Z and lepton decays in supersymmetric models, Phys. Rev. D 67 (2003) 035004 [hep-ph/0207328] [SPIRES].ADSGoogle Scholar
  43. [43]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [SPIRES].ADSGoogle Scholar
  45. [45]
    SINDRUM II collaboration, W.H. Bertl et al., A search for μe conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    SINDRUM II. collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [SPIRES].ADSGoogle Scholar
  47. [47]
    MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e γ+, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • F. del Águila
    • 1
  • J. I. Illana
    • 1
  • M. D. Jenkins
    • 1
  1. 1.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations