Advertisement

Journal of High Energy Physics

, 2010:19 | Cite as

Discovery potential of top-partners in a realistic composite Higgs model with early LHC data

  • Günther Dissertori
  • Elisabetta Furlan
  • Filip Moortgat
  • Pascal NefEmail author
Article

Abstract

Composite Higgs models provide a natural, non-supersymmetric solution to the hierarchy problem. In these models, one or more sets of heavy top-partners are typically introduced. Some of these new quarks can be relatively light, with a mass of a few hundred GeV, and could be observed with the early LHC collision data expected to be collected during 2010. We analyse in detail the collider signatures that these new quarks can produce. We show that final states with two (same-sign) or three leptons are the most promising discovery channels. They can yield a 5σ excess over the Standard Model expectation already with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive feature of this model. We present a new method to reconstruct their masses from their leptonic decay without relying on jets in the final state.

Keywords

Heavy Quark Physics Hadronic Colliders Technicolor and Composite Models 

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  3. [3]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  7. [7]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES]. ADSGoogle Scholar
  8. [8]
    P. Lodone, Vector-like quarks in a composite Higgs model, JHEP 12 (2008) 029 [arXiv:0806.1472] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].ADSGoogle Scholar
  11. [11]
    G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    CMS collaboration, K. Karafasoulis, A. Kyriakis, H. Petrakou, K. Mazumdar, Little Higgs Model and Top-like Heavy Quark at CMS, CERN Switzerland (2006), CMS-NOTE-2006-079.
  13. [13]
    S. Matsumoto, M.M. Nojiri and D. Nomura, Hunting for the top partner in the littlest Higgs model with T parity at the LHC, Phys. Rev. D 75 (2007) 055006 [hep-ph/0612249] [SPIRES]. ADSGoogle Scholar
  14. [14]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E.M. Wagner, Collider Phenomenology of Gauge-Higgs Unification Scenarios in Warped Extra Dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [SPIRES].ADSGoogle Scholar
  15. [15]
    C. Dennis, M. Karagoz, G. Servant and J. Tseng, Multi-W events at LHC from a warped extra dimension with custodial symmetry, hep-ph/0701158 [SPIRES].
  16. [16]
    B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [SPIRES]. ADSCrossRefGoogle Scholar
  17. [17]
    B. Holdom, t′ at the LHC: The physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [SPIRES]. ADSCrossRefGoogle Scholar
  18. [18]
    CMS collaboration, Search for Low Mass b′ Production in CMS, CMS Physics Analysis Summary, CERN Switzerland (2009), CMS-PAS-EXO-08-013.
  19. [19]
    CMS collaboration, Search for a Fourth Generation b′ Quark in tW Final State at CMS in pp Collisions at \( \sqrt {s} = 10\;TeV \), CERN Switzerland (2009), CMS-PAS-EXO-09-012.
  20. [20]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].ADSGoogle Scholar
  22. [22]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  23. [23]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  24. [24]
    CMS collaboration, Search for Exotic Top Partners with the CMS Experiment, CMS P hysics Analysis Summary, CERN Switzerland (2009), CMS-PAS-EXO-08-008.
  25. [25]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].ADSGoogle Scholar
  27. [27]
    ALEPH, CDF, D0, DELPHY, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD electroweak heavy flavour groups, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:0811.4682 [SPIRES].
  28. [28]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  29. [29]
    T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    CDF collaboration, T. Aaltonen et al., Search for New Bottomlike Quark Pair Decays \( Q\bar{Q} \to \left( {t{W^\mp }} \right)\left( {\bar{t}{W^\mp }} \right) \) in Same-Charge Dilepton Events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    CDF collaboration, T. Aaltonen et al., Search for New Particles Leading to Z+ jets Final States in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].ADSGoogle Scholar
  32. [32]
    CDF collaboration, T. Aaltonen et al., Search for Heavy Top-like Quarks Using Lepton Plus Jets Events in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 100 (2008) 161803 [arXiv:0801.3877] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    CDF collaboration, A. Lister, Search for Heavy Top-like Quarks t′Wq Using Lepton Plus Jets Events in 1.96 TeV \( p\bar{p} \) Collisions, arXiv:0810.3349 [SPIRES].
  34. [34]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity Amplitude Subroutines For Feynman Diagram Evaluations, KEK Report 91-11, Tsukuba Japan (1992).Google Scholar
  38. [38]
    P. Meade and M. Reece, BRIDGE: Branching ratio inquiry/decay generated events, hep-ph/0703031 [SPIRES].
  39. [39]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [SPIRES].ADSGoogle Scholar
  43. [43]
    S. Belov et al., LCG MCDB: A knowledgebase of Monte Carlo simulated events, Comput. Phys. Commun. 178 (2008) 222 [hep-ph/0703287] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
  45. [45]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    CMS collaboration, CMS Physics: Technical Design Report, Volume I: Detector Performance and Software, Technical Design Report, CERN Switzerland (2006), CERN-LHCC-2006-001.
  47. [47]
    A.L. Read, Modified frequentist analysis of search results (the CL s method), CERN Switzerland (2000), CERN-OPEN-2000-205.
  48. [48]
    T. Junk, Confidence Level Computation for Combining Searches with Small Statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [SPIRES].ADSGoogle Scholar
  49. [49]
    J. Mrazek and A. Wulzer, A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].ADSGoogle Scholar
  50. [50]
    S. Kraml and A.R. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [SPIRES].ADSGoogle Scholar
  51. [51]
    E.L. Berger and Q.-H. Cao, Next-to-Leading Order Cross sections for New Heavy Fermion Production at Hadron Colliders, Phys. Rev. D 81 (2010) 035006 [arXiv:0909.3555] [SPIRES]. ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Günther Dissertori
    • 1
  • Elisabetta Furlan
    • 2
  • Filip Moortgat
    • 1
  • Pascal Nef
    • 1
    Email author
  1. 1.Institute for Particle PhysicsETH ZurichZurichSwitzerland
  2. 2.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland

Personalised recommendations