Journal of High Energy Physics

, 2010:10 | Cite as

Stability of scalar fields in warped extra dimensions

  • S. Mert Aybat
  • Damien P. George


This work sets up a general theoretical framework to study stability of models with a warped extra dimension where N scalar fields couple minimally to gravity. Our analysis encompasses Randall-Sundrum models with branes and bulk scalars, and general domain-wall models. We derive the Schrödinger equation governing the spin-0 spectrum of perturbations of such a system. This result is specialized to potentials generated using fake supergravity, and we show that models without branes are free of tachyonic modes. Turning to the existence of zero modes, we prove a criterion which relates the number of normalizable zero modes to the parities of the scalar fields. Constructions with definite parity and only odd scalars are shown to be free of zero modes and are hence perturbatively stable. We give two explicit examples of domain-wall models with a soft wall, one which admits a zero mode and one which does not. The latter is an example of a model that stabilizes a compact extra dimension using only bulk scalars and does not require dynamical branes.


Field Theories in Higher Dimensions Supergravity Models 


  1. [1]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  3. [3]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B 125 (1983) 136 [SPIRES]. ADSGoogle Scholar
  7. [7]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [SPIRES]. MathSciNetADSGoogle Scholar
  8. [8]
    R. Davies, D.P. George and R.R. Volkas, The standard model on a domain-wall brane, Phys. Rev. D 77 (2008) 124038 [arXiv:0705.1584] [SPIRES].ADSGoogle Scholar
  9. [9]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear Confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [SPIRES].ADSGoogle Scholar
  11. [11]
    B. Batell and T. Gherghetta, Dynamical soft-wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    B. Batell, T. Gherghetta and D. Sword, The soft-wall standard model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [SPIRES].ADSGoogle Scholar
  14. [14]
    A. Delgado and D. Diego, Fermion mass hierarchy from the soft wall, Phys. Rev. D 80 (2009) 024030 [arXiv:0905.1095] [SPIRES].ADSGoogle Scholar
  15. [15]
    S. Mert Aybat and J. Santiago, Bulk fermions in warped models with a soft wall, Phys. Rev. D 80 (2009) 035005 [arXiv:0905.3032] [SPIRES].ADSGoogle Scholar
  16. [16]
    T. Gherghetta and D. Sword, Fermion flavor in soft-wall AdS, Phys. Rev. D 80 (2009) 065015 [arXiv:0907.3523] [SPIRES].ADSGoogle Scholar
  17. [17]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    G. von Gersdorff, From soft walls to infrared branes, arXiv:1005.5134 [SPIRES].
  19. [19]
    G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Falkowski and M. Pérez-Victoria, Holographic unhiggs, Phys. Rev. D 79 (2009) 035005 [arXiv:0810.4940] [SPIRES].ADSGoogle Scholar
  21. [21]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Toharia and M. Trodden, Metastable kinks in the orbifold, Phys. Rev. Lett. 100 (2008) 041602 [arXiv:0708.4005] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    M. Toharia and M. Trodden, Existence and stability of non-trivial scalar field configurations in orbifolded extra dimensions, Phys. Rev. D 77 (2008) 025029 [arXiv:0708.4008] [SPIRES]. ADSGoogle Scholar
  25. [25]
    S. Kobayashi, K. Koyama and J. Soda, Thick brane worlds and their stability, Phys. Rev. D 65 (2002) 064014 [hep-th/0107025] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M. Toharia, Odd tachyons in compact extra dimensions, arXiv:0803.2503 [SPIRES].
  27. [27]
    M. Toharia, M. Trodden and E.J. West, Scalar kinks in warped extra dimensions, Phys. Rev. D 82 (2010) 025009 [arXiv:1002.0011] [SPIRES].ADSGoogle Scholar
  28. [28]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [SPIRES].ADSGoogle Scholar
  30. [30]
    O. DeWolfe and D.Z. Freedman, Notes on fluctuations and correlation functions in holographic renormalization group flows, hep-th/0002226 [SPIRES].
  31. [31]
    D. Bazeia, M.M. Ferreira, A.R. Gomes and R. Menezes, Lorentz-violating effects on topological defects generated by two real scalar fields, Physica D 239 (2010) 942 [arXiv:1001.5286] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251 (1995) 267 [hep-th/9405029] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands

Personalised recommendations