Skip to main content

Stable solvers for real-time Complex Langevin

A preprint version of the article is available at arXiv.

Abstract

This study explores the potential of modern implicit solvers for stochastic partial differential equations in the simulation of real-time complex Langevin dynamics. Not only do these methods offer asymptotic stability, rendering the issue of runaway solution moot, but they also allow us to simulate at comparatively large Langevin time steps, leading to lower computational cost. We compare different ways of regularizing the underlying path integral and estimate the errors introduced due to the finite Langevin time steps. Based on that insight, we implement benchmark (non-)thermal simulations of the quantum anharmonic oscillator on the canonical Schwinger-Keldysh contour of short real-time extent.

References

  1. [1]

    C. Gattringer and K. Langfeld, Approaches to the sign problem in lattice field theory, Int. J. Mod. Phys. A 31 (2016) 1643007 [arXiv:1603.09517] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    H.B. Meyer, A Calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76 (2007) 101701 [arXiv:0704.1801] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    B.B. Brandt, A. Francis, B. Jäger and H.B. Meyer, Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors, Phys. Rev. D 93 (2016) 054510 [arXiv:1512.07249] [INSPIRE].

  5. [5]

    H.-T. Ding, O. Kaczmarek and F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice, Phys. Rev. D 94 (2016) 034504 [arXiv:1604.06712] [INSPIRE].

  6. [6]

    N. Astrakhantsev, V. Braguta and A. Kotov, Temperature dependence of shear viscosity of SU(3)–gluodynamics within lattice simulation, JHEP 04 (2017) 101 [arXiv:1701.02266] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    N.Y. Astrakhantsev, V.V. Braguta and A.Y. Kotov, Temperature dependence of the bulk viscosity within lattice simulation of SU(3) gluodynamics, Phys. Rev. D 98 (2018) 054515 [arXiv:1804.02382] [INSPIRE].

  8. [8]

    N. Astrakhantsev, V.V. Braguta, M. D’Elia, A.Y. Kotov, A.A. Nikolaev and F. Sanfilippo, Lattice study of the electromagnetic conductivity of the quark-gluon plasma in an external magnetic field, Phys. Rev. D 102 (2020) 054516 [arXiv:1910.08516] [INSPIRE].

  9. [9]

    S. Borsányiet al., High statistics lattice study of stress tensor correlators in pure SU(3) gauge theory, Phys. Rev. D 98 (2018) 014512 [arXiv:1802.07718] [INSPIRE].

  10. [10]

    R. Bellwied et al., The QCD phase diagram from analytic continuation, Phys. Lett. B 751 (2015) 559 [arXiv:1507.07510] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Bazavov et al., The QCD Equation of State to \( \mathcal{O} \)(\( {\mu}_B^6 \)) from Lattice QCD, Phys. Rev. D 95 (2017) 054504 [arXiv:1701.04325] [INSPIRE].

  12. [12]

    S. Borsányi et al., Higher order fluctuations and correlations of conserved charges from lattice QCD, JHEP 10 (2018) 205 [arXiv:1805.04445] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    M. Scherzer, D. Sexty and I.O. Stamatescu, Deconfinement transition line with the complex Langevin equation up to μ/T ∼ 5, Phys. Rev. D 102 (2020) 014515 [arXiv:2004.05372] [INSPIRE].

  14. [14]

    Y. Ito et al., Complex Langevin calculations in QCD at finite density, JHEP 10 (2020) 144 [arXiv:2007.08778] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    F. Attanasio, B. Jäger and F.P.G. Ziegler, Complex Langevin simulations and the QCD phase diagram: Recent developments, Eur. Phys. J. A 56 (2020) 251 [arXiv:2006.00476] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    F. Chevy and C. Mora, Ultra-cold polarized Fermi gases, Rept. Prog. Phys. 73 (2010) 112401 [arXiv:1003.0801] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    J. Braun et al., Imaginary polarization as a way to surmount the sign problem in Ab Initio calculations of spin-imbalanced Fermi gases, Phys. Rev. Lett. 110 (2013) 130404 [arXiv:1209.3319] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    K.B. Gubbels and H.T.C. Stoof, Imbalanced Fermi gases at unitarity, Phys. Rept. 525 (2013) 255 [arXiv:1205.0568] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005) 170201 [cond-mat/0408370] [INSPIRE].

  20. [20]

    C.E. Berger et al., Complex Langevin and other approaches to the sign problem in quantum many-body physics, Phys. Rept. 892 (2021) 1 [arXiv:1907.10183] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    AuroraScience collaboration, New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].

  22. [22]

    E. Seiler, Status ofComplex Langevin, EPJ Web Conf. 175 (2018) 01019 [arXiv:1708.08254] [INSPIRE].

  23. [23]

    G. Parisi and Y.-s. Wu, Perturbation theory without gauge fixing, Sci. Sin. 24 (1981) 483.

    MathSciNet  Google Scholar 

  24. [24]

    P.H. Damgaard and H. Huffel, Stochastic quantization, Phys. Rept. 152 (1987) 227 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    G.G. Batrouni et al., Langevin simulations of lattice field theories, Phys. Rev. D 32 (1985) 2736.

    ADS  Article  Google Scholar 

  26. [26]

    M. Scherzer, E. Seiler, D. Sexty and I.-O. Stamatescu, Complex Langevin and boundary terms, Phys. Rev. D 99 (2019) 014512 [arXiv:1808.05187] [INSPIRE].

  27. [27]

    M. Scherzer, E. Seiler, D. Sexty and I.O. Stamatescu, Control ling Complex Langevin simulations of lattice models by boundary term analysis, Phys. Rev. D 101 (2020) 014501 [arXiv:1910.09427] [INSPIRE].

  28. [28]

    K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the Complex Langevin method and the condition for correct convergence, Phys. Rev. D 94 (2016) 114515 [arXiv:1606.07627] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I.-O. Stamatescu, Controlling complex Langevin dynamics at finite density, Eur. Phys. J. A 49 (2013) 89 [arXiv:1303.6425] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J. Flower, S.W. Otto and S. Callahan, Complex Langevin equations and lattice gauge theory, Phys. Rev. D 34 (1986) 598.

    ADS  Article  Google Scholar 

  31. [31]

    G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Berges and D. Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating, Nucl. Phys. B 799 (2008) 306 [arXiv:0708.0779] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A.S. Kronfeld, Dynamics of Langevin simulations, Prog. Theor. Phys. Suppl. 111 (1993) 293 [hep-lat/9205008] [INSPIRE].

  35. [35]

    G. Aarts and F.A. James, Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited, JHEP 01 (2012) 118 [arXiv:1112.4655] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    J.M. Pawlowski and C. Zielinski, Thirring model at finite density in 0 + 1 dimensions with stochastic quantization: Crosscheck with an exact solution, Phys. Rev. D 87 (2013) 094503 [arXiv:1302.1622] [INSPIRE].

  37. [37]

    M. Namiki et al., Stochastic quantization, Springer, Germany (1992) [INSPIRE].

    Book  Google Scholar 

  38. [38]

    P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer, Germany (1992).

    Book  Google Scholar 

  39. [39]

    M. Milošević, Almost sure exponential stability of solutions to highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama approximation, Math. COmput. Model l. 57 (2013) 887.

    MathSciNet  Article  Google Scholar 

  40. [40]

    A. Rößler, Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations, SIAM J. Num. Anal. 48 (2010) 922.

    MathSciNet  Article  Google Scholar 

  41. [41]

    C. Rackauckas and Q. Nie, Differentialequations.jl — A performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Softw. 5 (2017).

  42. [42]

    C. Rackauckas and Q. Nie, Stability-optimized high order methods and stiffness detection for pathwise stiff stochastic differential equations, arXiv:1804.04344.

  43. [43]

    C. Rackauckas and Q. Nie, Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory, Discr. Cont. Dynam. Syst. B 22 (2017) 2731.

    MathSciNet  MATH  Google Scholar 

  44. [44]

    J. Berges, S. Borsányi, D. Sexty and I.O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].

  45. [45]

    A. Alexandru, G. Basar, P.F. Bedaque, S. Vartak and N.C. Warrington, Monte Carlo study of real time dynamics on the lattice, Phys. Rev. Lett. 117 (2016) 081602 [arXiv:1605.08040] [INSPIRE].

  46. [46]

    H. Nakazato and Y. Yamanaka, Minkowski stochastic quantization, Phys. Rev. D 34 (1986) 492.

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    J. Berges and I.O. Stamatescu, Simulating nonequilibrium quantum fields with stochastic quantization techniques, Phys. Rev. Lett. 95 (2005) 202003 [hep-lat/0508030] [INSPIRE].

  48. [48]

    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edition, International series of monographs on physics, Clarendon Press, Oxford, U.K. (2002).

  49. [49]

    J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2004) 3 [hep-ph/0409233] [INSPIRE].

  50. [50]

    D. Alvestad, CLSolvers.jl: stable solvers for real-time Complex Langevin, Zenodo (2021).

  51. [51]

    G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty and I.-O. Stamatescu, Stability of complex Langevin dynamics in effective models, JHEP 03 (2013) 073 [arXiv:1212.5231] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Alvestad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.02735

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvestad, D., Larsen, R. & Rothkopf, A. Stable solvers for real-time Complex Langevin. J. High Energ. Phys. 2021, 138 (2021). https://doi.org/10.1007/JHEP08(2021)138

Download citation

Keywords

  • Lattice Quantum Field Theory
  • Stochastic Processes