Quantum quench in non-relativistic fermionic field theory: harmonic traps and 2d string theory

  • Sumit R. Das
  • Shaun HamptonEmail author
  • Sinong Liu
Open Access
Regular Article - Theoretical Physics


We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the c = 1 Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.


Field Theories in Lower Dimensions Holography and condensed matter physics (AdS/CMT) Matrix Models Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems, order parameter evolution, defect generation, and qubit transfer, Quantum Quenching, Anealing and Computation, Lecture Notes Phys.802 (2010) 21 [arXiv:0908.2922].
  2. [2]
    V. Gritsev and A. Polkovnikov, Universal Dynamics Near Quantum Critical Points, in Understanding Quantum Phase Transitions, Taylor & Francis, Boca Raton U.S.A. (2009) [arXiv:0910.3692] [INSPIRE].
  3. [3]
    J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys.59 (2010) 1063 [arXiv:0912.4034].ADSCrossRefGoogle Scholar
  4. [4]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys.83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Lamacraft and J.E. Moore, Potential insights into non-equilibrium behaviour from atomic physics, in Ultracold Bosonic and Fermionic Gases, Contemporary Concepts in Condensed Matter Science, Elsevier, Amsterdam The Netherlands (2011) [arXiv:1106.3567].
  6. [6]
    T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys.A 9 (1976) 1387 [INSPIRE].
  7. [7]
    W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature317 (1985) 505 [INSPIRE].
  8. [8]
    A. Chandran, A. Erez, S.S. Gubser and S.L. Sondhi, Kibble-Zurek problem: Universality and the scaling limit, Phys. Rev.B 86 (2012) 064304 [arXiv:1202.5277].
  9. [9]
    L. Cincio, J. Dziarmaga, M.M. Rams and W.H. Zurek, Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model, Phys. Rev.A 75 (2007) 052321 [cond-mat/0701768] [INSPIRE].
  10. [10]
    F. Pollmann, S. Mukherjee, A.G. Green and J.E. Moore, Dynamics after a sweep through a quantum critical point, Phys. Rev.E 81 (2010) 020101.Google Scholar
  11. [11]
    A. Francuz, J. Dziarmaga, B. Gardas and W.H. Zurek, Space and time renormalization in phase transition dynamics, Phys. Rev.B 93 (2016) 075134 [arXiv:1510.06132] [INSPIRE].
  12. [12]
    E. Canovi, E. Ercolessi, P. Naldesi, L. Taddia and D. Vodola, Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition, Phys. Rev.B 89 (2014) 104303.Google Scholar
  13. [13]
    P. Caputa, S.R. Das, M. Nozaki and A. Tomiya, Quantum Quench and Scaling of Entanglement Entropy, Phys. Lett.B 772 (2017) 53 [arXiv:1702.04359] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Basu and S.R. Das, Quantum Quench across a Holographic Critical Point, JHEP01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum Quench Across a Zero Temperature Holographic Superfluid Transition, JHEP03 (2013) 146 [arXiv:1211.7076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Basu, D. Das, S.R. Das and K. Sengupta, Quantum Quench and Double Trace Couplings, JHEP12 (2013) 070 [arXiv:1308.4061] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P.M. Chesler, A.M. Garcia-Garcia and H. Liu, Defect Formation beyond Kibble-Zurek Mechanism and Holography, Phys. Rev.X 5 (2015) 021015 [arXiv:1407.1862] [INSPIRE].
  18. [18]
    J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor, arXiv:1406.2329 [INSPIRE].
  19. [19]
    S.R. Das and T. Morita, Kibble-Zurek Scaling in Holographic Quantum Quench : Backreaction, JHEP01 (2015) 084 [arXiv:1409.7361] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
  21. [21]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech.0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].
  22. [22]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent approximation, Phys. Rev.B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].
  23. [23]
    H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
  24. [24]
    H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP07 (2016) 077 [arXiv:1509.05044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP05 (2017) 065 [arXiv:1608.05101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement Growth after a Global Quench in Free Scalar Field Theory, JHEP11 (2016) 166 [arXiv:1609.00872] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev.D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].
  29. [29]
    H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
  30. [30]
    P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular momentum and U(1) charge, JHEP11 (2013) 052 [arXiv:1306.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
  32. [32]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett.112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].
  34. [34]
    S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP02 (2015) 167 [arXiv:1411.7710] [INSPIRE].
  35. [35]
    S.R. Das, D.A. Galante and R.C. Myers, Smooth and fast versus instantaneous quenches in quantum field theory, JHEP08 (2015) 073 [arXiv:1505.05224] [INSPIRE].
  36. [36]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP05 (2013) 067 [arXiv:1302.2924] [INSPIRE].
  38. [38]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett.111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].
  39. [39]
    A. Dymarsky and M. Smolkin, Universality of fast quenches from the conformal perturbation theory, JHEP01 (2018) 112 [arXiv:1709.08654] [INSPIRE].
  40. [40]
    M. Goykhman, T. Shachar and M. Smolkin, On fast quenches and spinning correlators, JHEP06 (2018) 168 [arXiv:1804.03855] [INSPIRE].
  41. [41]
    M. Goykhman, T. Shachar and M. Smolkin, On quantum quenches at one loop, JHEP01 (2019) 022 [arXiv:1810.02258] [INSPIRE].
  42. [42]
    S.R. Das, D.A. Galante and R.C. Myers, Quantum Quenches in Free Field Theory: Universal Scaling at Any Rate, JHEP05 (2016) 164 [arXiv:1602.08547] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Das, S.R. Das, D.A. Galante, R.C. Myers and K. Sengupta, An exactly solvable quench protocol for integrable spin models, JHEP11 (2017) 157 [arXiv:1706.02322] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complexity as a novel probe of quantum quenches: universal scalings and purifications, Phys. Rev. Lett.122 (2019) 081601 [arXiv:1807.07075] [INSPIRE].
  45. [45]
    S. Liu, Complexity and scaling in quantum quench in 1 + 1 dimensional fermionic field theories, JHEP07 (2019) 104 [arXiv:1902.02945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D.W.F. Alves and G. Camilo, Evolution of complexity following a quantum quench in free field theory, JHEP06 (2018) 029 [arXiv:1804.00107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Post-Quench Evolution of Distance and Uncertainty in a Topological System: Complexity, Entanglement and Revivals, arXiv:1811.05985 [INSPIRE].
  48. [48]
    E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys.28 (1972) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement Evolution in Lifshitz-type Scalar Theories, JHEP01 (2019) 137 [arXiv:1811.11470] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Kormos, M. Collura and P. Calabrese, Analytic results for a quantum quench from free to hard-core one dimensional bosons, Phys. Rev.A 89 (2014) 013609 [arXiv:1307.2142] [INSPIRE].
  51. [51]
    B. Bertini, Approximate light cone effects in a non-relativistic quantum field theory after a local quench, Phys. Rev.B 95 (2017) 075153 [arXiv:1611.05030] [INSPIRE].
  52. [52]
    I.A. Pedrosa, Exact wave functions of a harmonic oscillator with time-dependent mass and frequency, Phys. Rev.A 55 (1997) 3219.Google Scholar
  53. [53]
    O. Ciftja, A simple derivation of the exact wavefunction of a harmonic oscillator with time-dependent mass and frequency, J. Math.A 32 (1999) 6385.Google Scholar
  54. [54]
    S.P. Kim and W. Kim, Construction of exact Ermakov-Pinney solutions and time-dependent quantum oscillators, J. Korean Phys. Soc.69 (2016) 1513 [arXiv:1609.00248] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    I.R. Klebanov, String theory in two-dimensions, in Spring School on String Theory and Quantum Gravity, Trieste Italy (1991), pg. 30 [hep-th/9108019] [INSPIRE].
  56. [56]
    S.R. Das, The one-dimensional matrix model and string theory, in Spring School on Superstrings, Trieste Italy (1992), pg. 172 [hep-th/9211085] [INSPIRE].
  57. [57]
    A. Jevicki, Development in 2 − D string theory, in Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste Italy (1993), pg. 96 [hep-th/9309115] [INSPIRE].
  58. [58]
    P.H. Ginsparg and G.W. Moore, Lectures on 2-D gravity and 2-D string theory, Yale University, New Haven U.S.A. (1992), YCTP-P23-92 [hep-th/9304011].
  59. [59]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].
  60. [60]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP09 (2009) 034 [arXiv:0904.0464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev.D 74 (2006) 026002 [hep-th/0602107] [INSPIRE].
  62. [62]
    A. Awad, S.R. Das, S. Nampuri, K. Narayan and S.P. Trivedi, Gauge Theories with Time Dependent Couplings and their Cosmological Duals, Phys. Rev.D 79 (2009) 046004 [arXiv:0807.1517] [INSPIRE].
  63. [63]
    A. Awad, S.R. Das, A. Ghosh, J.-H. Oh and S.P. Trivedi, Slowly Varying Dilaton Cosmologies and their Field Theory Duals, Phys. Rev.D 80 (2009) 126011 [arXiv:0906.3275] [INSPIRE].
  64. [64]
    C.-S. Chu and P.-M. Ho, Time-dependent AdS/CFT duality and null singularity, JHEP04 (2006) 013 [hep-th/0602054] [INSPIRE].
  65. [65]
    C.-S. Chu and P.-M. Ho, Spacetime singularity and AdS/CFT for time dependent background, Prog. Theor. Phys. Suppl.171 (2007) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    C.-S. Chu and P.-M. Ho, Time-dependent AdS/CFT duality. II. Holographic reconstruction of bulk metric and possible resolution of singularity, JHEP02 (2008) 058 [arXiv:0710.2640] [INSPIRE].
  67. [67]
    N. Turok, B. Craps and T. Hertog, From big crunch to big bang with AdS/CFT, arXiv:0711.1824 [INSPIRE].
  68. [68]
    B. Craps, T. Hertog and N. Turok, On the Quantum Resolution of Cosmological Singularities using AdS/CFT, Phys. Rev.D 86 (2012) 043513 [arXiv:0712.4180] [INSPIRE].
  69. [69]
    N. Engelhardt, T. Hertog and G.T. Horowitz, Holographic Signatures of Cosmological Singularities, Phys. Rev. Lett.113 (2014) 121602 [arXiv:1404.2309] [INSPIRE].
  70. [70]
    N. Engelhardt, T. Hertog and G.T. Horowitz, Further Holographic Investigations of Big Bang Singularities, JHEP07 (2015) 044 [arXiv:1503.08838] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    N. Engelhardt and G.T. Horowitz, Holographic Consequences of a No Transmission Principle, Phys. Rev.D 93 (2016) 026005 [arXiv:1509.07509] [INSPIRE].
  72. [72]
    R.H. Brandenberger, E.G.M. Ferreira, I.A. Morrison, Y.-F. Cai, S.R. Das and Y. Wang, Fluctuations in a cosmology with a spacelike singularity and their gauge theory dual description, Phys. Rev.D 94 (2016) 083508 [arXiv:1601.00231] [INSPIRE].
  73. [73]
    S.R. Das, S. Hampton and S. Liu, to appear.Google Scholar
  74. [74]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].
  75. [75]
    G. Mandal, Fermions from half-BPS supergravity, JHEP08 (2005) 052 [hep-th/0502104] [INSPIRE].
  76. [76]
    G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP03 (2007) 031 [hep-th/0606088] [INSPIRE].
  77. [77]
    G. Mandal and T. Morita, Quantum quench in matrix models: Dynamical phase transitions, Selective equilibration and the Generalized Gibbs Ensemble, JHEP10 (2013) 197 [arXiv:1302.0859] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Kulkarni, G. Mandal and T. Morita, Quantum quench and thermalization of one-dimensional Fermi gas via phase space hydrodynamics, Phys. Rev.A 98 (2018) 043610 [arXiv:1806.09343] [INSPIRE].
  79. [79]
    M. Collura, S. Sotiriadis and P. Calabrese, Equilibration of a Tonks-Girardeau Gas Following a Trap Release, Phys. Rev. Lett.110 (2013) 245301.Google Scholar
  80. [80]
    M. Collura, S. Sotiriadis and P. Calabrese, Quench dynamics of a Tonks-Girardeau gas released from a harmonic trap, J. Stat. Mech.2013 (2013) P09025.MathSciNetCrossRefGoogle Scholar
  81. [81]
    M. Collura, S. Kormos and P. Calabrese, Stationary entanglement entropies following an interaction quench in 1D Bose gas, J. Stat. Mech.2014 (2014) P01009.MathSciNetCrossRefGoogle Scholar
  82. [82]
    M. Kormos, A. Shashi, Y.-Z. Chou, J.-S. Caux and A. Imambekov, Interaction quenches in the one-dimensional Bose gas, Phys. Rev.B 88 (2013) 205131 [arXiv:1305.7202] [INSPIRE].
  83. [83]
    P. Mazza, M. Collura, S. Kormos and P. Calabrese, Interaction quench in a trapped one-dimensional Bose gas, J. Stat. Mech.2014 (2014) P11016.MathSciNetCrossRefGoogle Scholar
  84. [84]
    M. Collura, S. Kormos and P. Calabrese, Quantum quench in a harmonically trapped one-dimensional Bose gas, Phys. Rev.A 97 (2018) 033609.Google Scholar
  85. [85]
    A. Minguzzi and D. M. Gangardt, Exact Coherent States of a Harmonically Confined Tonks-Girardeau Gas, Phys. Rev. Lett.94 (2005) 240404 [cond-mat/0504024].
  86. [86]
    S. Scopa, J. Unterberger and D. Karevski, Exact dynamics of a one dimensional bose gas in a periodic time-dependent harmonic trap, J. Phys.A 51 (18) (2018) 185001 [arXiv:1801.07462]ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    M. Kulkarni and A.G. Abanov, Cold Fermi-gas with long range interaction in a harmonic trap, Nucl. Phys.B 846 (2011) 122 [arXiv:1006.0966] [INSPIRE].
  88. [88]
    E. Bettelheim, A.G. Abanov and P. Weigmann, Orthogonality Catastrophe and Shock Waves in a Nonequilibrium Fermi Gas, Phys. Rev. Lett.97 (2006) 246402.Google Scholar
  89. [89]
    P. Ruggiero, Y. Brun and J. Dubail, Conformal field theory on top of a breathing one-dimensional gas of hard core bosons, SciPost Phys.6 (2019) 051 [arXiv:1901.08132] [INSPIRE].
  90. [90]
    S. Scopa and D. Karevski, One-dimensional bose gas driven by a slow time-dependent harmonic trap, J. Phys.A 50 (42) (2017) 425301.MathSciNetCrossRefGoogle Scholar
  91. [91]
    S. Ghosh, K.S. Gupta and S.C.L. Srivastava, Entanglement dynamics following a sudden quench: An exact solution, EPL120 (2017) 50005 [arXiv:1709.02202] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    V.P. Ermakov, Second-order differential equations: conditions for complete integrability, Univ. Izv. Kiev.20 (1880) 1.Google Scholar
  93. [93]
    E. Pinney, The nonlinear differential equation y ′′ + p(x)y + cy −3 = 0, Proc. Am. Math. Soc.1 (1950) 681.MathSciNetzbMATHGoogle Scholar
  94. [94]
    A. Dhar, G. Mandal and S.R. Wadia, Classical Fermi fluid and geometric action for c = 1, Int. J. Mod. Phys.A 8 (1993) 325 [hep-th/9204028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    A. Dhar, G. Mandal and S.R. Wadia, Nonrelativistic fermions, coadjoint orbits of W(infinity) and string field theory at c = 1, Mod. Phys. Lett.A 7 (1992) 3129 [hep-th/9207011] [INSPIRE].
  96. [96]
    A. Dhar, G. Mandal and S.R. Wadia, W(infinity) coherent states and path integral derivation of bosonization of nonrelativistic fermions in one-dimension, Mod. Phys. Lett.A 8 (1993) 3557 [hep-th/9309028] [INSPIRE].
  97. [97]
    I. Klich and L. Levitov, Quantum Noise as an Entanglement Meter, Phys. Rev. Lett.102 (2009) 100502 [arXiv:0804.1377] [INSPIRE].
  98. [98]
    H.F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie and K. Le Hur, Bipartite Fluctuations as a Probe of Many-Body Entanglement, Phys. Rev.B 85 (2012) 035409 [arXiv:1109.1001] [INSPIRE].
  99. [99]
    I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys.A 36 (2003) L205 [cond-mat/0212631].
  100. [100]
    I. Kilch, Lower entropy bounds and particle number fluctuations in a Fermi sea, J. Phys.A 39 (2006) L85 [quant-ph/0406068].
  101. [101]
    P. Calabrese, M. Mintchev and E. Vicari, The entanglement entropy of one-dimensional gases, Phys. Rev. Lett.107 (2011) 020601 [arXiv:1105.4756] [INSPIRE].
  102. [102]
    P. Calabrese, M. Mintchev and E. Vicari, The Entanglement entropy of 1D systems in continuous and homogenous space, J. Stat. Mech.1109 (2011) P09028 [arXiv:1107.3985] [INSPIRE].CrossRefGoogle Scholar
  103. [103]
    S.R. Das, Geometric entropy of nonrelativistic fermions and two-dimensional strings, Phys. Rev.D 51 (1995) 6901 [hep-th/9501090] [INSPIRE].
  104. [104]
    S.R. Das, Degrees of freedom in two-dimensional string theory, Nucl. Phys. Proc. Suppl.B 45 (1996) 224 [hep-th/9511214] [INSPIRE].
  105. [105]
    S.A. Hartnoll and E. Mazenc, Entanglement entropy in two dimensional string theory, Phys. Rev. Lett.115 (2015) 121602 [arXiv:1504.07985] [INSPIRE].
  106. [106]
    P. Calabrese, P. Le Doussal and S. Majumdar, Random matrices and entanglement entropy of trapped Fermi gases, Phys. Rev.A 91 (2015) 012303.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.

Personalised recommendations