Higgs boson decay into four bottom quarks in the SM and beyond

Open Access
Regular Article - Theoretical Physics


We present predictions for the Higgs boson decay into four bottom quarks in the standard model and via light exotic scalars retaining full bottom-quark mass dependence. In the SM the decay can be induced either by the Yukawa couplings of bottom quarks and top quarks or the electroweak couplings. We calculate the partial decay width and various differential distributions up to next-to-leading order in QCD. We find large QCD corrections for decay via Yukawa couplings, as large as 90% for the partial decay width, and reduced scale variations. The results of this paper are therefore helpful for the measurement of this multi-jets final state at future Higgs factory of electron-positron colliders. We also propose several observables that can differentiate the SM decay channel and the exotic decay channel and compare their next-to-leading order predictions.


Higgs Physics Perturbative QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    CMS collaboration, Observation of \( \mathrm{t}\overline{\mathrm{t}}H \)production, Phys. Rev. Lett.120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  4. [4]
    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett.B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
  5. [5]
    ATLAS collaboration, Observation of Hb \( \overline{b} \)decays and V H production with the ATLAS detector, Phys. Lett.B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].
  6. [6]
    CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett.121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
  7. [7]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  8. [8]
    T. Behnke et al., The International Linear Collider Technical Design ReportVolume 1: Executive Summary, arXiv:1306.6327 [INSPIRE].
  9. [9]
    CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 2Physics & Detector, arXiv:1811.10545 [INSPIRE].
  10. [10]
    P. Lebrun et al., The CLIC Programme: Towards a Staged e +e Linear Collider Exploring the Terascale: CLIC Conceptual Design Report, arXiv:1209.2543 [INSPIRE].
  11. [11]
    TLEP Design Study Working Group collaboration, First Look at the Physics Case of TLEP, JHEP01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  12. [12]
    LHeC Study Group collaboration, A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys.G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].
  13. [13]
    M. Klein, Future Deep Inelastic Scattering with the LHeC, in From My Vast Repertoire . . .: Guido Altarellis Legacy, A. Levy, S. Forte and G. Ridolfi eds., pp. 303-347 (2019) [] [arXiv:1802.04317] [INSPIRE].
  14. [14]
    F. An et al., Precision Higgs physics at the CEPC, Chin. Phys.C 43 (2019) 043002 [arXiv:1810.09037] [INSPIRE].
  15. [15]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett.114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
  16. [16]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3LO in QCD, JHEP05 (2018) 028 [arXiv:1802.00833] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in QCD, Phys. Rev. Lett.117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].
  18. [18]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP06 (2013) 072 [arXiv:1302.6216] [INSPIRE].
  19. [19]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett.B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].
  20. [20]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
  21. [21]
    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett.B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].
  22. [22]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP10 (2016) 107 [arXiv:1608.04798] [INSPIRE].
  23. [23]
    Y. Gong, Z. Li, X. Xu, L.L. Yang and X. Zhao, Mixed QCD-EW corrections for Higgs boson production at e +e colliders, Phys. Rev.D 95 (2017) 093003 [arXiv:1609.03955] [INSPIRE].
  24. [24]
    Q.-F. Sun, F. Feng, Y. Jia and W.-L. Sang, Mixed electroweak-QCD corrections to e +e HZ at Higgs factories, Phys. Rev.D 96 (2017) 051301 [arXiv:1609.03995] [INSPIRE].
  25. [25]
    W. Chen, F. Feng, Y. Jia and W.-L. Sang, Mixed electroweak-QCD corrections to e +e μ +μ H at CEPC with finite-width effect, Chin. Phys.C 43 (2019) 013108 [arXiv:1811.05453] [INSPIRE].
  26. [26]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O \( \left({\alpha}_s^4\right) \), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett.96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
  27. [27]
    J. Davies, M. Steinhauser and D. Wellmann, Completing the hadronic Higgs boson decay at order \( \left({\alpha}_s^4\right) \), Nucl. Phys.B 920 (2017) 20 [arXiv:1703.02988] [INSPIRE].
  28. [28]
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On Higgs decays to hadrons and the R-ratio at N 4LO, JHEP08 (2017) 113 [arXiv:1707.01044] [INSPIRE].
  29. [29]
    P.A. Baikov and K.G. Chetyrkin, Top Quark Mediated Higgs Boson Decay into Hadrons to Order \( \left({\alpha}_s^5\right) \), Phys. Rev. Lett.97 (2006) 061803 [hep-ph/0604194] [INSPIRE].
  30. [30]
    A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J.C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].
  31. [31]
    M. Spira, Higgs Boson Production and Decay at Hadron Colliders, Prog. Part. Nucl. Phys.95 (2017) 98 [arXiv:1612.07651] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP03 (2012) 035 [arXiv:1110.2368] [INSPIRE].
  33. [33]
    V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP04 (2015) 036 [arXiv:1501.07226] [INSPIRE].
  34. [34]
    R. Mondini, M. Schiavi and C. Williams, N 3LO predictions for the decay of the Higgs boson to bottom quarks, JHEP06 (2019) 079 [arXiv:1904.08960] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    W. Bernreuther, L. Chen and Z.-G. Si, Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD, JHEP07 (2018) 159 [arXiv:1805.06658] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.E. Kaplan and M. McEvoy, Searching for Higgs decays to four bottom quarks at LHCb, Phys. Lett.B 701 (2011) 70 [arXiv:0909.1521] [INSPIRE].
  37. [37]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev.D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
  38. [38]
    Z. Liu, L.-T. Wang and H. Zhang, Exotic decays of the 125 GeV Higgs boson at future e +e lepton colliders, Chin. Phys.C 41 (2017) 063102 [arXiv:1612.09284] [INSPIRE].
  39. [39]
    S. Liu, Y.-L. Tang, C. Zhang and S.-h. Zhu, Exotic Higgs Decay hϕϕ → 4b at the LHeC, Eur. Phys. J.C 77 (2017) 457 [arXiv:1608.08458] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the Haa → 4b channel in pp collisions at \( \sqrt{s}=13 \)TeV with the ATLAS detector, JHEP10 (2018) 031 [arXiv:1806.07355] [INSPIRE].
  41. [41]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev.D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
  42. [42]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HW W/ZZ → 4 fermions, JHEP02 (2007) 080 [hep-ph/0611234] [INSPIRE].
  43. [43]
    G. Li, Z. Li, Y. Liu, Y. Wang and X. Zhao, Probing the Higgs boson-gluon coupling via the jet energy profile at e +e colliders, Phys. Rev.D 98 (2018) 076010 [arXiv:1805.10138] [INSPIRE].
  44. [44]
    J. Gao, Y. Gong, W.-L. Ju and L.L. Yang, Thrust distribution in Higgs decays at the next-to-leading order and beyond, JHEP03 (2019) 030 [arXiv:1901.02253] [INSPIRE].
  45. [45]
    M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytic Next-To-Leading Order Calculation of Energy-Energy Correlation in Gluon-Initiated Higgs Decays, JHEP06 (2019) 037 [arXiv:1903.07277] [INSPIRE].
  46. [46]
    J. Gao, Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders, JHEP01 (2018) 038 [arXiv:1608.01746] [INSPIRE].
  47. [47]
    R. Mondini and C. Williams, Hb \( \overline{b} \)j at next-to-next-to-leading order accuracy, JHEP06 (2019) 120 [arXiv:1904.08961] [INSPIRE].
  48. [48]
    J.C. Collins, F. Wilczek and A. Zee, Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current, Phys. Rev.D 18 (1978) 242 [INSPIRE].
  49. [49]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000) 43 [hep-ph/0004189] [INSPIRE].
  50. [50]
    A.L. Kataev, N.V. Krasnikov and A.A. Pivovarov, Two Loop Calculations for the Propagators of Gluonic Currents, Nucl. Phys.B 198 (1982) 508 [Erratum ibid.B 490 (1997) 505] [hep-ph/9612326] [INSPIRE].
  51. [51]
    T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in Higgs Boson Decays, Z. Phys.C 18 (1983) 69 [INSPIRE].
  52. [52]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys.B 359 (1991) 283 [INSPIRE].
  53. [53]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett.B 264 (1991) 440 [INSPIRE].
  54. [54]
    A.L. Kataev and V.T. Kim, The Effects of the QCD corrections to Γ(H 0b \( \overline{b} \)), Mod. Phys. Lett.A 9 (1994) 1309 [INSPIRE].
  55. [55]
    L.R. Surguladze, Quark mass effects in fermionic decays of the Higgs boson in O \( \left({\alpha}_s^2\right) \)perturbative QCD, Phys. Lett.B 341 (1994) 60 [hep-ph/9405325] [INSPIRE].
  56. [56]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys.B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  57. [57]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O \( \left({\alpha}_s^3\right) \)and their connection to low-energy theorems, Nucl. Phys.B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  58. [58]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J.C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  59. [59]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  60. [60]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun.185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: A Proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [INSPIRE].
  62. [62]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun.182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].
  63. [63]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys.B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  64. [64]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e +e → 4 fermion processes: Technical details and further results, Nucl. Phys.B 724 (2005) 247 [Erratum ibid.B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  65. [65]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  66. [66]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept.457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  67. [67]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  68. [68]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  69. [69]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e +e annihilation, Phys. Lett.B 269 (1991) 432 [INSPIRE].
  70. [70]
    A. Banfi, G.P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets at the Tevatron and LHC, JHEP07 (2007) 026 [arXiv:0704.2999] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations