On the high-scale instanton interference effect: axion models without domain wall problem

  • Mario ReigEmail author
Open Access
Regular Article - Theoretical Physics


We show that a new chiral, confining interaction can be used to break PecceiQuinn symmetry dynamically and solve the domain wall problem, simultaneously. The resulting theory is an invisible QCD axion model without domain walls. No dangerous heavy relics appear.


Cosmology of Theories beyond the SM Beyond Standard Model Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A. Vilenkin, Cosmic strings and domain walls, Phys. Rept.121 (1985) 263 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys.A 9 (1976) 1387 [INSPIRE].ADSzbMATHGoogle Scholar
  3. [3]
    Ya. B. Zeldovich, I. Yu. Kobzarev and L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz.67 (1974) 3 [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Sikivie, Of axions, domain walls and the early universe, Phys. Rev. Lett.48 (1982) 1156 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Vilenkin and A.E. Everett, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons, Phys. Rev. Lett.48 (1982) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Lazarides et al., Spontaneous breaking of lepton number and the cosmological domain wall problem, Phys. Rev. Lett.122 (2019) 151301 [arXiv:1806.11198] [INSPIRE].
  7. [7]
    G. Lazarides and Q. Shafi, Axion models with no domain wall problem, Phys. Lett.B 115 (1982) 21.ADSCrossRefGoogle Scholar
  8. [8]
    R. Sato, F. Takahashi and M. Yamada, Unified origin of axion and monopole dark matter and solution to the domain-wall problem, Phys. Rev.D 98 (2018) 043535 [arXiv:1805.10533] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Stojkovic, K. Freese and G.D. Starkman, Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem, Phys. Rev.D 72 (2005) 045012 [hep-ph/0505026] [INSPIRE].
  10. [10]
    B. Holdom, Domain walls. 1. Axion models, Phys. Rev.D 27 (1983) 332 [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].Google Scholar
  12. [12]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett.B 104 (1981) 199.ADSCrossRefGoogle Scholar
  13. [13]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.E. Kim, A composite invisible axion, Phys. Rev.D 31 (1985) 1733 [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Yamada, T.T. Yanagida and K. Yonekura, Cosmologically safe QCD axion without fine-tuning, Phys. Rev. Lett.116 (2016) 051801 [arXiv:1510.06504] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Wilczek and G. Moore, Superheavy light quarks and the strong P, T problem, arXiv:1601.02937 [INSPIRE].
  18. [18]
    M. Redi and R. Sato, Composite accidental axions, JHEP05 (2016) 104 [arXiv:1602.05427] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.K. Gaillard et al., Color unified dynamical axion, Eur. Phys. J.C 78 (2018) 972 [arXiv:1805.06465] [INSPIRE].
  20. [20]
    H.-S. Lee and W. Yin, Peccei-Quinn symmetry from a hidden gauge group structure, Phys. Rev.D 99 (2019) 015041 [arXiv:1811.04039] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    P. Anastasopoulos et al., Emergent/composite axions, arXiv:1811.05940 [INSPIRE].
  22. [22]
    M.B. Gavela, M. Ibe, P. Quilez and T.T. Yanagida, Automatic Peccei-Quinn symmetry, Eur. Phys. J.C 79 (2019) 542 [arXiv:1812.08174] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    V.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].
  24. [24]
    A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev.D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev.D 93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Dimopoulos, A. Hook, J. Huang and G. Marques-Tavares, A collider observable QCD axion, JHEP11 (2016) 052 [arXiv:1606.03097] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    P. Agrawal and K. Howe, A flavorful factoring of the strong CP problem, JHEP12 (2018) 035 [arXiv:1712.05803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Agrawal and K. Howe, Factoring the strong CP problem, JHEP12 (2018) 029 [arXiv:1710.04213] [INSPIRE].
  30. [30]
    S.M. Barr and J.E. Kim, New confining force solution of the QCD axion domain-wall problem, Phys. Rev. Lett.113 (2014) 241301 [arXiv:1407.4311] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett.64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Ernst, A. Ringwald and C. Tamarit, Axion predictions in SO(10) × U(1)PQmodels, JHEP02 (2018) 103 [arXiv:1801.04906] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Weinberg, A new light boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Weinberg, Gauge and global symmetries at high temperature, Phys. Rev.D 9 (1974) 3357 [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Caputo and M. Reig, Cosmic implications of a low-scale solution to the axion domain wall problem, arXiv:1905.13116 [INSPIRE].
  38. [38]
    T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys.70 (1998) 323 [hep-ph/9610451] [INSPIRE].
  39. [39]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental composite dark matter, JHEP07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Reig, J.W.F. Valle, C.A. Vaquera-Araujo and F. Wilczek, A model of comprehensive unification, Phys. Lett.B 774 (2017) 667 [arXiv:1706.03116] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Raby, S. Dimopoulos and L. Susskind, Tumbling gauge theories, Nucl. Phys.B 169 (1980) 373 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Reig, D. Restrepo, J.W.F. Valle and O. Zapata, Bound-state dark matter with Majorana neutrinos, Phys. Lett.B 790 (2019) 303 [arXiv:1806.09977] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.AHEP Group, Institut de Física Corpuscular — CSIC/Universitat de ValènciaParc Científic de PaternaPaternaSpain

Personalised recommendations