Gapped continuum Kaluza-Klein spectrum

  • Eugenio MegíasEmail author
  • Mariano Quirós
Open Access
Regular Article - Theoretical Physics


We consider a warped five-dimensional model with an ultraviolet (UV) brane and, on top of the Standard Model isolated modes, continua of KK modes with different mass gaps for all particles: gauge bosons, fermions, graviton, radion and Higgs boson. The model can be considered as a modelization in five dimensions of gapped unparticles. The five dimensional metric has a singularity, at a finite (infinite) value of the proper (conformal) coordinate, which is admissible as it supports finite temperature in the form of a black hole horizon. An infrared (IR) brane, with particular jumping conditions, is introduced to trigger correct electroweak breaking. The gravitational metric is AdS5 near the UV brane, to solve the hierarchy problem with a fundamental Planck scale, and linear, in conformal coordinates, near the IR, as in the linear dilaton and five-dimensional clockwork models. The branes, and singularity, distances are fixed, à la Goldberger-Wise, by a bulk scalar field with brane potentials explicitly breaking the conformal symmetry. The bosonic continuum of KK modes with the smallest mass gap are those of gauge bosons, and so they are the most likely produced at the LHC. Mass gaps of the continuum of KK fermions do depend on their localization in the extra dimension. We have computed the spectral functions, and arbitrary Green’s functions, and shown how they can modify some Standard Model processes.


Phenomenology of Field Theories in Higher Dimensions Phenomenology of Large extra dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  2. [2]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
  3. [3]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  4. [4]
    CMS collaboration, Search for resonant tt production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP04 (2019) 031 [arXiv:1810.05905] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Rev.D 99 (2019) 092004 [arXiv:1902.10077] [INSPIRE].
  6. [6]
    G.F. Giudice and M. McCullough, Comment on “Disassembling the clockwork mechanism”, arXiv:1705.10162 [INSPIRE].
  7. [7]
    G.F. Giudice et al., Clockwork/linear dilaton: structure and phenomenology, JHEP06 (2018) 009 [arXiv:1711.08437] [INSPIRE].
  8. [8]
    I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV little string theory from holography, Phys. Rev. Lett.108 (2012) 081602 [arXiv:1102.4043] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. Antoniadis, S. Dimopoulos and A. Giveon, Little string theory at a TeV, JHEP05 (2001) 055 [hep-th/0103033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys.4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys.12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].
  12. [12]
    A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP12 (2008) 107 [arXiv:0806.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Warped electroweak breaking without custodial symmetry, Phys. Lett. B 697 (2011) 208 [arXiv:1011.2205] [INSPIRE].
  14. [14]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP05 (2011) 083 [arXiv:1103.1388] [INSPIRE].
  15. [15]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Improving naturalness in warped models with a heavy bulk Higgs boson, Phys. Rev.D 84 (2011) 035024 [arXiv:1104.3149] [INSPIRE].
  16. [16]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Flavor phenomenology in general 5D warped spaces, JHEP01 (2012) 033 [arXiv:1110.3324] [INSPIRE].
  17. [17]
    M. Quirós, Higgs bosons in extra dimensions, Mod. Phys. Lett.A 30 (2015) 1540012 [arXiv:1311.2824] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Carmona, E. Ponton and J. Santiago, Phenomenology of non-custodial warped models, JHEP10 (2011) 137 [arXiv:1107.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. de Blas, A. Delgado, B. Ostdiek and A. de la Puente, LHC signals of non-custodial warped 5D models, Phys. Rev. D 86 (2012) 015028 [arXiv:1206.0699] [INSPIRE].
  20. [20]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP08 (2003) 050 [hep-ph/0308036] [INSPIRE].
  21. [21]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  22. [22]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett.83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  23. [23]
    H. Georgi, Unparticle physics, Phys. Rev. Lett.98 (2007) 221601 [hep-ph/0703260] [INSPIRE].
  24. [24]
    H. Georgi, Another odd thing about unparticle physics, Phys. Lett.B 650 (2007) 275 [arXiv:0704.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Cacciapaglia, G. Marandella and J. Terning, Colored unparticles, JHEP01 (2008) 070 [arXiv:0708.0005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP02 (2009) 049 [arXiv:0804.0424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Stancato and J. Terning, The Unhiggs, JHEP11 (2009) 101 [arXiv:0807.3961] [INSPIRE].
  28. [28]
    A. Falkowski and M. Pérez-Victoria, Holographic Unhiggs, Phys. Rev.D 79 (2009) 035005 [arXiv:0810.4940] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Falkowski and M. Pérez-Victoria, Electroweak precision observables and the Unhiggs, JHEP12 (2009) 061 [arXiv:0901.3777] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Stancato and J. Terning, Constraints on the Unhiggs model from top quark decay, Phys. Rev.D 81 (2010) 115012 [arXiv:1002.1694] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Englert, M. Spannowsky, D. Stancato and J. Terning, Unconstraining the Unhiggs, Phys. Rev.D 85 (2012) 095003 [arXiv:1203.0312] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Englert, D.G. Netto, M. Spannowsky and J. Terning, Constraining the Unhiggs with LHC data, Phys. Rev.D 86 (2012) 035010 [arXiv:1205.0836] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B. Bellazzini et al., Quantum critical Higgs, Phys. Rev.X 6 (2016) 041050 [arXiv:1511.08218] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    C. Csáki et al., Continuum naturalness, JHEP03 (2019) 142 [arXiv:1811.06019] [INSPIRE].
  35. [35]
    S.J. Lee, Continuum partners, Nucl. Part. Phys. Proc.303-305 (2018) 64 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    S.S. Gubser, AdS/CFT and gravity, Phys. Rev.D 63 (2001) 084017 [hep-th/9912001] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett.28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Megías, G. Nardini and M. Quirós, Cosmological phase transitions in warped space: gravitational waves and collider signatures, JHEP09 (2018) 095 [arXiv:1806.04877] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev.D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    E. Megías, O. Pujolàs and M. Quirós, On dilatons and the LHC diphoton excess, JHEP05 (2016) 137 [arXiv:1512.06106] [INSPIRE].
  42. [42]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP05 (2001) 064 [hep-th/0105048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on unparticles, Phys. Lett.B 662 (2008) 367 [arXiv:0801.1140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Delgado, J.R. Espinosa, J.M. No and M. Quirós, A note on unparticle decays, Phys. Rev.D 79 (2009) 055011 [arXiv:0812.1170] [INSPIRE].ADSGoogle Scholar
  46. [46]
    E. Megías and O. Pujolàs, Naturally light dilatons from nearly marginal deformations, JHEP08 (2014) 081 [arXiv:1401.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev.D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Carena, E. Megías, M. Quirós and C. Wagner, RD(∗) in custodial warped space, JHEP12 (2018) 043 [arXiv:1809.01107] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  2. 2.Institut de Física d’Altes Energies (IFAE) and The Barcelona Institute of Science and Technology (BIST)Campus UABBarcelonaSpain

Personalised recommendations