A safe CFT at large charge

  • Domenico Orlando
  • Susanne ReffertEmail author
  • Francesco Sannino
Open Access
Regular Article - Theoretical Physics


We apply the large-charge limit to the first known example of a four-dimensional gauge-Yukawa theory featuring an ultraviolet interacting fixed point in all couplings. We determine the energy of the ground state in presence of large fixed global charges and deduce the global symmetry breaking pattern. We show that the fermions decouple at low energy leaving behind a confining Yang-Mills theory and a characteristic spectrum of type I (relativistic) and type II (non-relativistic) Goldstone bosons. Armed with the knowledge acquired above we finally arrive at establishing the conformal dimensions of the theory as a triple expansion in the large-charge, the number of flavors and the controllably small inverse gauge coupling constant at the UV fixed point. Our results unveil a number of noteworthy properties of the low-energy spectrum, vacuum energy and conformal properties of the theory. They also allow us to derive a new consistency condition for the relative sizes of the couplings at the fixed point.


Conformal Field Theory Global Symmetries Spontaneous Symmetry Breaking Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev.B 4 (1971) 3174 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev.B 4 (1971) 3184 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.J. Gross and F. Wilczek, Asymptotically Free Gauge TheoriesI, Phys. Rev.D 8 (1973) 3633 [INSPIRE].ADSGoogle Scholar
  4. [4]
    H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett.30 (1973) 1346 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP12 (2014) 178 [arXiv:1406.2337] [INSPIRE].
  6. [6]
    D.F. Litim, M. Mojaza and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, JHEP01 (2016) 081 [arXiv:1501.03061] [INSPIRE].
  7. [7]
    J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys.A 17 (1984) L385 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J.L. Cardy, Universal amplitudes in finite-size scaling: generalisation to arbitrary dimensionality, J. Phys.A 18 (1985) L757 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP12 (2015) 071 [arXiv:1505.01537] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP04 (2017) 059 [arXiv:1610.04495] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP06 (2017) 011 [arXiv:1611.02912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Loukas, D. Orlando and S. Reffert, Matrix models at large charge, JHEP10 (2017) 085 [arXiv:1707.00710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Watanabe, Chern-Simons-Matter Theories at Large Global Charge, arXiv:1904.09815 [INSPIRE].
  14. [14]
    D. Banerjee, S. Chandrasekharan and D. Orlando, Conformal dimensions via large charge expansion, Phys. Rev. Lett.120 (2018) 061603 [arXiv:1707.00711] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Banerjee, S. Chandrasekharan, D. Orlando and S. Reffert, Conformal dimensions in the large charge sectors at the O(4) Wilson-Fisher fixed point, Phys. Rev. Lett.123 (2019) 051603 [arXiv:1902.09542] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Hellerman and S. Maeda, On the Large R-charge Expansion in \( \mathcal{N} \) = 2 Superconformal Field Theories, JHEP12 (2017) 135 [arXiv:1710.07336] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Hellerman, S. Maeda and M. Watanabe, Operator Dimensions from Moduli, JHEP10 (2017) 089 [arXiv:1706.05743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal correlation functions in rank 1 SCFTs, arXiv:1804.01535 [INSPIRE].
  19. [19]
    M. Beccaria, On the large R-charge \( \mathcal{N} \)= 2 chiral correlators and the Toda equation, JHEP02 (2019) 009 [arXiv:1809.06280] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Bourget, D. Rodriguez-Gomez and J.G. Russo, A limit for large R-charge correlators in N = 2 theories, JHEP05(2018) 074 [arXiv:1803.00580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Favrod, D. Orlando and S. Reffert, The large-charge expansion for Schrödinger systems, JHEP12 (2018) 052 [arXiv:1809.06371] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.M. Kravec and S. Pal, Nonrelativistic Conformal Field Theories in the Large Charge Sector, JHEP02 (2019) 008 [arXiv:1809.08188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S.M. Kravec and S. Pal, The Spinful Large Charge Sector of Non-Relativistic CFTs: From Phonons to Vortex Crystals, JHEP05 (2019) 194 [arXiv:1904.05462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    O. Antipin, M. Gillioz, J. Krog, E. Mølgaard and F. Sannino, Standard Model Vacuum Stability and Weyl Consistency Conditions, JHEP08 (2013) 034 [arXiv:1306.3234] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, arXiv:1705.05825 [INSPIRE].
  26. [26]
    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, Observables in Inhomogeneous Ground States at Large Global Charge, arXiv:1804.06495 [INSPIRE].
  27. [27]
    L. Alvarez-Gaume, D. Orlando and S. Reffert, Large charge at large n, to appear.Google Scholar
  28. [28]
    S. Abel and F. Sannino, Radiative symmetry breaking from interacting UV fixed points, Phys. Rev.D 96 (2017) 056028 [arXiv:1704.00700] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H.B. Nielsen and S. Chadha, On How to Count Goldstone Bosons, Nucl. Phys.B 105 (1976) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Elizalde, Ten physical applications of spectral zeta functions, Lect. Notes Phys.855 (2012) 1 [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Domenico Orlando
    • 1
    • 2
  • Susanne Reffert
    • 2
    Email author
  • Francesco Sannino
    • 3
  1. 1.INFN sezione di TorinoArnold-Regge CenterTorinoItaly
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  3. 3.CP3-Origins & the Danish Institute for Advanced StudyUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations