Advertisement

Boundary entropy of integrable perturbed SU (2)k WZNW

  • Dinh-Long VuEmail author
  • Ivan Kostov
  • Didina Serban
Open Access
Regular Article - Theoretical Physics

Abstract

We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2)k WZNW model with boundary and compute the boundary entropy for a specific boundary condition. The main problem we encounter is that in case of non-diagonal scattering the boundary entropy is infinite. We show that this infinity can be cured by a subtraction. The difference of the boundary entropies in the UV and in the IR limits is finite, and matches the known g-functions for the unperturbed SU (2)k WZNW model for even values of the level.

Keywords

Bethe Ansatz Boundary Quantum Field Theory Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys.10 (1969) 1115 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys.B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett.67 (1991) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nucl. Phys.B 453 (1995) 581 [hep-th/9503227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Woynarovich, O(1) contribution of saddle point fluctuations to the free energy of Bethe Ansatz systems, Nucl. Phys.B 700 (2004) 331 [cond-mat/0402129] [INSPIRE].
  6. [6]
    P. Dorey, D. Fioravanti, C. Rim and R. Tateo, Integrable quantum field theory with boundaries: The exact g function, Nucl. Phys.B 696 (2004) 445 [hep-th/0404014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys.B 552 (1999) 624 [hep-th/9902075] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B. Pozsgay, On O(1) contributions to the free energy in Bethe Ansatz systems: The exact g-function, JHEP08 (2010) 090 [arXiv:1003.5542] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. Kostov, D. Serban and D.-L. Vu. Boundary TBA, trees and loops, (2018).Google Scholar
  10. [10]
    P. Dorey, A. Lishman, C. Rim and R. Tateo, Reflection factors and exact g-functions for purely elastic scattering theories, Nucl. Phys.B 744 (2006) 239 [hep-th/0512337] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Dorey, C. Rim and R. Tateo, Exact g-function flow between conformal field theories, Nucl. Phys.B 834 (2010) 485 [arXiv:0911.4969] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT, JHEP12 (2011) 059 [arXiv:1108.4914] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Dorey, R. Tateo and R. Wilbourne, Exact g-function flows from the staircase model, Nucl. Phys.B 843 (2011) 724 [arXiv:1008.1190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A.B. Zamolodchikov, Resonance factorized scattering and roaming trajectories, J. Phys.A 39 (2006) 12847 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    B. Pozsgay and O. Rákos, Exact boundary free energy of the open XXZ chain with arbitrary boundary conditions, J. Stat. Mech.1811 (2018) 113102 [arXiv:1804.09992] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett.A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys.B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M.R. Gaberdiel, A. Recknagel and G.M.T. Watts, The conformal boundary states for SU (2) at level 1, Nucl. Phys.B 626 (2002) 344 [hep-th/0108102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P. Dorey, I. Runkel, R. Tateo and G. Watts, g function flow in perturbed boundary conformal field theories, Nucl. Phys.B 578 (2000) 85 [hep-th/9909216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Ahn, D. Bernard and A. LeClair, Fractional Supersymmetries in Perturbed Coset CFTs and Integrable Soliton Theory, Nucl. Phys.B 346 (1990) 409 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A.B. Zamolodchikov, TBA equations for integrable perturbed SU (2)-k x SU (2)-l/SU (2)-k+ l coset models, Nucl. Phys.B 366 (1991) 122 [INSPIRE].
  22. [22]
    T.J. Hollowood, From A(m-1) trigonometric S matrices to the thermodynamic Bethe ansatz, Phys. Lett.B 320 (1994) 43 [hep-th/9308147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Babichenko, From S matrices to the thermodynamic Bethe ansatz, Nucl. Phys.B 697 (2004) 481 [hep-th/0402164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    V. Bazhanov and N. Reshetikhin, Restricted Solid on Solid Models Connected With Simply Based Algebras and Conformal Field Theory, J. Phys.A 23 (1990) 1477 [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys.92 (1984) 455 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Di Vecchia and P. Rossi, On the Equivalence Between the Wess-Zumino Action and the Free Fermi Theory in Two-dimensions, Phys. Lett.B 140 (1984) 344 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys.B 247 (1984) 83 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P. Fendley, Integrable sigma models, Proceedings of the APCTP Winter School, March 2000, pp. 108-178.Google Scholar
  29. [29]
    V.V. Bazhanov and N. Yu. Reshetikhin, Critical Rsos Models and Conformal Field Theory, Int. J. Mod. Phys.A 4 (1989) 115 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    T.R. Klassen and E. Melzer, Purely Elastic Scattering Theories and their Ultraviolet Limits, Nucl. Phys.B 338 (1990) 485 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T.R. Klassen and E. Melzer, The thermodynamics of purely elastic scattering theories and conformal perturbation theory, Nucl. Phys.B 350 (1991) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J.M. Evans and T.J. Hollowood, Integrable theories that are asymptotically CFT, Nucl. Phys.B 438 (1995) 469 [hep-th/9407113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P. Fendley and K.A. Intriligator, Central charges without finite size effects, Phys. Lett.B 319 (1993) 132 [hep-th/9307101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    A.N. Kirillov, Dilogarithm identities, partitions and spectra in conformal field theory. 1., hep-th/9212150 [INSPIRE].
  35. [35]
    E. Corrigan, P.E. Dorey, R.H. Rietdijk and R. Sasaki, Affine Toda field theory on a half line, Phys. Lett.B 333 (1994) 83 [hep-th/9404108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    I. Aniceto, Z. Bajnok, T. Gombor, M. Kim and L. Palla, On integrable boundaries in the 2 dimensional O(N ) σ-models, J. Phys.A 50 (2017) 364002 [arXiv:1706.05221] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    T. Gombor, Nonstandard Bethe Ansatz equations for open O(N ) spin chains, Nucl. Phys.B 935 (2018) 310 [arXiv:1712.03753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueGif-sur-YvetteFrance

Personalised recommendations