Note on generating functions and connected correlators of 1/2-BPS Wilson loops in \( \mathcal{N} \) = 4 SYM theory

  • Anthonny F. Canazas Garay
  • Alberto Faraggi
  • Wolfgang MückEmail author
Open Access
Regular Article - Theoretical Physics


The generating functions for the Wilson loops in the symmetric and antisymmetric representations of the gauge group U(N ) are expressed in terms of the connected correlators of multiply-wound Wilson loops, using ingredients from the representation theory of the symmetric group. This provides a proof of a recent observation by Okuyama. As a by-product, we present a new calculation of the connected 2-point correlator of multiplywound Wilson loops at leading order in 1/N.


1/N Expansion AdS-CFT Correspondence Wilson ’t Hooft and Polyakov loops 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett.80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J.C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys.42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory from random matrix theory, Phys. Lett.B 513 (2001) 179 [Erratum ibid. B 524 (2002) 400] [hep-th/0101225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll and S.P. Kumar, Higher rank Wilson loops from a matrix model, JHEP08 (2006) 026 [hep-th/0605027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP05 (2006) 037 [hep-th/0603208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP08 (2006) 074 [hep-th/0604007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    K. Okuyama and G.W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP06 (2006) 057 [hep-th/0604209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys.A 22 (2007) 1353 [hep-th/0601089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Lunin, On gravitational description of Wilson lines, JHEP06 (2006) 026 [hep-th/0604133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Fiol and G. Torrents, Exact results for Wilson loops in arbitrary representations, JHEP01 (2014) 020 [arXiv:1311.2058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Gordon, Antisymmetric Wilson loops in \( \mathcal{N} \)= 4 SYM beyond the planar limit, JHEP01 (2018) 107 [arXiv:1708.05778] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Okuyama, Connected correlator of 1/2 BPS Wilson loops in \( \mathcal{N} \)= 4 SYM, JHEP10 (2018) 037 [arXiv:1808.10161] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Ambjørn, L. Chekhov, C.F. Kristjansen and Yu. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys.B 404 (1993) 127 [Erratum ibid. B 449 (1995) 681] [hep-th/9302014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    X. Chen-Lin, Symmetric Wilson loops beyond leading order, SciPost Phys.1 (2016) 013 [arXiv:1610.02914] [INSPIRE].
  18. [18]
    A.F. Canazas Garay, A. Faraggi and W. Mück, Antisymmetric Wilson loops in \( \mathcal{N} \)= 4 SYM: from exact results to non-planar corrections, JHEP08 (2018) 149 [arXiv:1807.04052] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 superYang-Mills theory, JHEP08 (1999) 013 [hep-th/9903042] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5× S 5: semiclassical partition function, JHEP04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP05 (2008) 064 [arXiv:0803.0315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Faraggi and L.A. Pando Zayas, The spectrum of excitations of holographic Wilson loops, JHEP05 (2011) 018 [arXiv:1101.5145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Faraggi, W. Mück and L.A. Pando Zayas, One-loop effective action of the holographic antisymmetric Wilson loop, Phys. Rev.D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett.B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Forini et al., Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5, JHEP02 (2016) 105 [arXiv:1512.00841] [INSPIRE].
  26. [26]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    M. Horikoshi and K. Okuyama, α′-expansion of anti-symmetric Wilson loops in \( \mathcal{N} \)= 4 SYM from Fermi gas, PTEP2016 (2016) 113B05 [arXiv:1607.01498] [INSPIRE].
  28. [28]
    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5× S 5, JHEP03 (2017) 003 [arXiv:1702.02164] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Aguilera-Damia et al., Toward precision holography in Type IIA with Wilson loops, JHEP08 (2018) 044 [arXiv:1805.00859] [INSPIRE].
  30. [30]
    J. Aguilera-Damia et al., Zeta-function regularization of holographic Wilson loops, Phys. Rev.D 98 (2018) 046011 [arXiv:1802.03016] [INSPIRE].
  31. [31]
    B. Fiol, J. Martínez-Montoya and A. Rios Fukelman, Wilson loops in terms of color invariants, JHEP05 (2019) 202 [arXiv:1812.06890] [INSPIRE].
  32. [32]
    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys.B 403 (1993) 395 [hep-th/9303046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D.J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev.D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    NIST Digital Library of Mathematical Functions,, Release 1.0.22 (2019).
  35. [35]
    B.E. Sagan, The symmetric group, Springer, Germany (2001).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Física, Pontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de Ciencias Fisicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile
  3. 3.Dipartimento di Fisica “Ettore Pancini”Università degli Studi di Napoli “Federico II”NapoliItaly
  4. 4.INFN — Sezione di NapoliNapoliItaly

Personalised recommendations