Searches for other vacua. Part I. Bubbles in our universe

  • Anson Hook
  • Junwu HuangEmail author
Open Access
Regular Article - Theoretical Physics


We discuss models in which vacua other than our own can be directly observed in the present universe. Models with density-dependent vacuum structure can give rise to ‘non-lethal’-vacua: vacua with lower energy-density than our vacuum, but only in regions with finite Standard Model densities. These models provide an explicit example of a bubble which is confined to a finite region of space and produces potentially detectable signatures, unlike standard Coleman tunneling events where bubbles expand at the speed of light and are never directly observable. We study the expansion and contraction of a confined bubble created after a core-collapse supernova, focusing on energy deposition that may be observable in the vicinity of a supernova remnant due to the formation and evolution of a confined bubble.


Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys.61 (1989) 1 [INSPIRE].
  2. [2]
    L.F. Abbott, A mechanism for reducing the value of the cosmological constant, Phys. Lett.B 150 (1985) 427.Google Scholar
  3. [3]
    J.D. Brown and C. Teitelboim, Dynamical neutralization of the cosmological constant, Phys. Lett.B 195 (1987) 177 [INSPIRE].
  4. [4]
    P.J. Steinhardt and N. Turok, Why the cosmological constant is small and positive, Science312 (2006) 1180 [astro-ph/0605173] [INSPIRE].
  5. [5]
    L. Alberte et al., Relaxing the cosmological constant: a proof of concept, JHEP12 (2016) 022 [arXiv:1608.05715] [INSPIRE].
  6. [6]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Relaxation of the cosmological constant, Phys. Rev.D 100 (2019) 015048 [arXiv:1902.06793] [INSPIRE].
  7. [7]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett.59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J.116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  9. [9]
    Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J.517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  10. [10]
    WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl.148 (2003) 175 [astro-ph/0302209] [INSPIRE].
  11. [11]
    R. Bousso, TASI lectures on the cosmological constant, Gen. Rel. Grav.40 (2008) 607 [arXiv:0708.4231] [INSPIRE].
  12. [12]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev.D 21 (1980) 3305 [INSPIRE].
  13. [13]
    B. Freivogel, M. Kleban, M. Rodriguez Martinez and L. Susskind, Observational consequences of a landscape, JHEP03 (2006) 039 [hep-th/0505232] [INSPIRE].
  14. [14]
    A. Aguirre, M.C. Johnson and A. Shomer, Towards observable signatures of other bubble universes, Phys. Rev.D 76 (2007) 063509 [arXiv:0704.3473] [INSPIRE].
  15. [15]
    S. Chang, M. Kleban and T.S. Levi, When worlds collide, JCAP04 (2008) 034 [arXiv:0712.2261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Aguirre and M.C. Johnson, Towards observable signatures of other bubble universes. II: exact solutions for thin-wall bubble collisions, Phys. Rev.D 77 (2008) 123536 [arXiv:0712.3038] [INSPIRE].
  17. [17]
    A. Aguirre, M.C. Johnson and M. Tysanner, Surviving the crash: assessing the aftermath of cosmic bubble collisions, Phys. Rev.D 79 (2009) 123514 [arXiv:0811.0866] [INSPIRE].
  18. [18]
    S. Chang, M. Kleban and T.S. Levi, Watching worlds collide: effects on the CMB from cosmological bubble collisions, JCAP04 (2009) 025 [arXiv:0810.5128] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Aguirre and M.C. Johnson, A status report on the observability of cosmic bubble collisions, Rept. Prog. Phys.74 (2011) 074901 [arXiv:0908.4105] [INSPIRE].
  20. [20]
    B. Czech et al., Polarizing bubble collisions, JCAP12 (2010) 023 [arXiv:1006.0832] [INSPIRE].
  21. [21]
    M. Kleban, Cosmic bubble collisions, Class. Quant. Grav.28 (2011) 204008 [arXiv:1107.2593] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Gobbetti and M. Kleban, Analyzing cosmic bubble collisions, JCAP05 (2012) 025 [arXiv:1201.6380] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.L. Wainwright et al., Simulating the universe(s): from cosmic bubble collisions to cosmological observables with numerical relativity, JCAP03 (2014) 030 [arXiv:1312.1357] [INSPIRE].
  24. [24]
    C.L. Wainwright, M.C. Johnson, A. Aguirre and H.V. Peiris, Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity, JCAP10 (2014) 024 [arXiv:1407.2950] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.C. Johnson, C.L. Wainwright, A. Aguirre and H.V. Peiris, Simulating the universe(s) III: observables for the full bubble collision spacetime, JCAP07 (2016) 020 [arXiv:1508.03641] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
  27. [27]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev.D 16 (1977) 1762 [INSPIRE].
  28. [28]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE].
  29. [29]
    J. Polchinski, The cosmological constant and the string landscape, in the proceedings of th 23rdSolvay Conference on Physics, The Quantum Structure of Space and Time, December 1-3, Brussels, Belgium (2005), hep-th/0603249 [INSPIRE].
  30. [30]
    C. Csáki et al., Neutron star mergers chirp about vacuum energy, JHEP09 (2018) 087 [arXiv:1802.04813] [INSPIRE].
  31. [31]
    A. Hook and J. Huang, Probing axions with neutron star inspirals and other stellar processes, JHEP06 (2018) 036 [arXiv:1708.08464] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
  33. [33]
    A. Arvanitaki et al., A small weak scale from a small cosmological constant, JHEP05 (2017) 071 [arXiv:1609.06320] [INSPIRE].
  34. [34]
    A. Hook, Solving the hierarchy problem discretely, Phys. Rev. Lett.120 (2018) 26180 [arXiv:1802.10093] [INSPIRE].
  35. [35]
    A. Arvanitaki et al., String axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
  36. [36]
    W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett.85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
  37. [37]
    L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev.D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
  38. [38]
    A. Arvanitaki et al., The large-misalignment mechanism for compact axion halo formation from the QCD axion to fuzzy dark matter, in preparation.Google Scholar
  39. [39]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett.B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP05 (2008) 002 [arXiv:0710.2484] [INSPIRE].
  41. [41]
    J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP09 (2015) 174 [arXiv:1505.04825] [INSPIRE].
  42. [42]
    G. Franciolini, G.F. Giudice, D. Racco and A. Riotto, Implications of the detection of primordial gravitational waves for the Standard Model, JCAP05 (2019) 022 [arXiv:1811.08118] [INSPIRE].
  43. [43]
    A. Hook, J. Huang and D. Racco, Searches for other vacua II: a new Higgstory at the cosmological collider, arXiv:1907.10624.
  44. [44]
    J. Huang et al., Prospects for axion searches with Advanced LIGO through binary mergers, Phys. Rev.D 99 (2019) 063013 [arXiv:1807.02133] [INSPIRE].
  45. [45]
    Ya.B. Zeldovich, I.Yu. Kobzarev and L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz.67 (1974) 3 [Sov. Phys. JETP40 (1974) 1] [INSPIRE].
  46. [46]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett.B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  47. [47]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev.D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
  48. [48]
    A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys.B 216 (1983) 421 [Erratum ibid.B 223 (1983) 544] [INSPIRE].
  49. [49]
    A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys. Lett.B 100 (1981) 37.Google Scholar
  50. [50]
    M. Dine et al., Towards the theory of the electroweak phase transition, Phys. Rev.D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].
  51. [51]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Arvanitaki, J. Huang and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev.D 91 (2015) 015015 [arXiv:1405.2925] [INSPIRE].
  53. [53]
    F.K. Thielemann, K. Nomoto and K. Yokoi, Explosive nucleosynthesis in carbon deflagration models of Type I supernovae, Astron. Astrophy.158 (1986) 17.ADSGoogle Scholar
  54. [54]
    H.A. Bethe, Supernova mechanisms, Rev. Mod. Phys.62 (1990) 801.ADSCrossRefGoogle Scholar
  55. [55]
    T.A. Weaver, The structure of supernova shock waves, Astrophys. J. Suppl.32 (1976) 233.ADSCrossRefGoogle Scholar
  56. [56]
    B. Müller, The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D, Mon. Not. Roy. Astron. Soc.453 (2015) 287 [arXiv:1506.05139] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D.G. Yakovlev and C.J. Pethick, Neutron star cooling, Ann. Rev. Astron. Astrophys.42 (2004) 169 [astro-ph/0402143] [INSPIRE].
  58. [58]
    S.P. Reynolds, Supernova remnants at high energy, Annu. Rev. Astron. Astrophys.46 (2008) 89.ADSCrossRefGoogle Scholar
  59. [59]
    D. Page, J.M. Lattimer, M. Prakash and A.W. Steiner, Minimal cooling of neutron stars: a new paradigm, Astrophys. J. Suppl.155 (2004) 623 [astro-ph/0403657] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.I. MacFadyen, S.E. Woosley and A. Heger, Supernovae, jets and collapsars, Astrophys. J.550 (2001) 410 [astro-ph/9910034] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    I. Garcia Garcia, S. Krippendorf and J. March-Russell, The string soundscape at gravitational wave detectors, Phys. Lett.B 779 (2018) 348 [arXiv:1607.06813] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    J.H. Taylor and J.M. Weisberg, A new test of general relativityGravitational radiation and the binary pulsar PSR 1913+16, Astrophys. J.253 (1982) 908.Google Scholar
  63. [63]
    LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
  64. [64]
    S. Dimopoulos et al., An Atomic Gravitational wave Interferometric Sensor (AGIS), Phys. Rev.D 78 (2008) 122002 [arXiv:0806.2125] [INSPIRE].
  65. [65]
    J.R. Espinosa, D. Racco and A. Riotto, Cosmological signature of the standard model higgs vacuum instability: primordial black holes as dark matter, Phys. Rev. Lett.120 (2018) 121301 [arXiv:1710.11196] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Maryland Center for Fundamental PhysicsUniversity of MarylandCollege ParkU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations