Advertisement

Inflaxion dark matter

  • Takeshi Kobayashi
  • Lorenzo UbaldiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

A new mechanism for producing axion dark matter is proposed. By invoking low-scale inflation and a kinetic mixing between the axion and the inflaton, it is shown that the axion is driven to a field point slightly displaced from the potential minimum, which can give rise to the observed dark matter abundance. In this framework, different combinations of the axion and inflaton fields play various cosmological roles, including generating the cosmological perturbations, reheating the universe, and serving as dark matter. The kinetic mixing also relates the dark matter lifetime with the reheating temperature. The mechanism tames axions that would otherwise overdominate the universe, and thus opens up new windows in the axion parameter space, including decay constants at the GUT scale and higher.

Keywords

Cosmology of Theories beyond the SM Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  2. [2]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett.B 91 (1980) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc.195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev.D 23 (1981) 347 [INSPIRE].
  5. [5]
    G. Elor, M. Escudero and A. Nelson, Baryogenesis and Dark Matter from B Mesons, Phys. Rev.D 99 (2019) 035031 [arXiv:1810.00880] [INSPIRE].
  6. [6]
    Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
  7. [7]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].
  11. [11]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys.79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
  13. [13]
    W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett.85 (2000) 1158 [astro-ph/0003365] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev.D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
  15. [15]
    V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton and G.D. Becker, First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett.119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].
  16. [16]
    E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D.J.E. Marsh and J. Baur, Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest, Mon. Not. Roy. Astron. Soc.471 (2017) 4606 [arXiv:1703.09126] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Kobayashi, R. Murgia, A. De Simone, V. Iršič and M. Viel, Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe, Phys. Rev.D 96 (2017) 123514 [arXiv:1708.00015] [INSPIRE].
  18. [18]
    N. Bar, D. Blas, K. Blum and S. Sibiryakov, Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation, Phys. Rev.D 98 (2018) 083027 [arXiv:1805.00122] [INSPIRE].
  19. [19]
    K.S. Babu, S.M. Barr and D. Seckel, Axion dissipation through the mixing of Goldstone bosons, Phys. Lett.B 336 (1994) 213 [hep-ph/9406308] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP10 (2012) 146 [arXiv:1206.0819] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    T. Higaki, N. Kitajima and F. Takahashi, Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line, JCAP12 (2014) 004 [arXiv:1408.3936] [INSPIRE].
  22. [22]
    M. Cicoli, V.A. Diaz, V. Guidetti and M. Rummel, The 3.5 keV Line from Stringy Axions, JHEP10 (2017) 192 [arXiv:1707.02987] [INSPIRE].
  23. [23]
    P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP02 (2018) 006 [arXiv:1709.06085] [INSPIRE].
  24. [24]
    P.W. Graham and A. Scherlis, Stochastic axion scenario, Phys. Rev.D 98 (2018) 035017 [arXiv:1805.07362] [INSPIRE].
  25. [25]
    F. Takahashi, W. Yin and A.H. Guth, QCD axion window and low-scale inflation, Phys. Rev.D 98 (2018) 015042 [arXiv:1805.08763] [INSPIRE].
  26. [26]
    R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP05 (2017) 044 [arXiv:1702.03284] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.T. Co, E. Gonzalez and K. Harigaya, Axion Misalignment Driven to the Bottom, JHEP05 (2019) 162 [arXiv:1812.11186] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev.D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R. Alonso and A. Urbano, Wormholes and masses for Goldstone bosons, JHEP02 (2019) 136 [arXiv:1706.07415] [INSPIRE].
  31. [31]
    L. Kofman and S. Mukohyama, Rapid roll Inflation with Conformal Coupling, Phys. Rev.D 77 (2008) 043519 [arXiv:0709.1952] [INSPIRE].
  32. [32]
    T. Kobayashi, S. Mukohyama and B.A. Powell, Cosmological Constraints on Rapid Roll Inflation, JCAP09 (2009) 023 [arXiv:0905.1752] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Kobayashi, F. Takahashi, T. Takahashi and M. Yamaguchi, Spectator field models in light of spectral index after Planck, JCAP10 (2013) 042 [arXiv:1303.6255] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  35. [35]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev.D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
  36. [36]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  37. [37]
    Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett.117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].
  38. [38]
    J.L. Ouellet et al., Design and implementation of the ABRACADABRA-10 cm axion dark matter search, Phys. Rev.D 99 (2019) 052012 [arXiv:1901.10652] [INSPIRE].
  39. [39]
    A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett.113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].
  40. [40]
    CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys.13 (2017) 584 [arXiv:1705.02290] [INSPIRE].
  41. [41]
    K. Enqvist, S. Nadathur, T. Sekiguchi and T. Takahashi, Decaying dark matter and the tension in σ 8, JCAP09 (2015) 067 [arXiv:1505.05511] [INSPIRE].
  42. [42]
    A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett.83 (1999) 1506 [astro-ph/9812088] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. De Simone, T. Kobayashi and S. Liberati, Geometric Baryogenesis from Shift Symmetry, Phys. Rev. Lett.118 (2017) 131101 [arXiv:1612.04824] [INSPIRE].
  44. [44]
    M.M. Anber and L. Sorbo, N-flationary magnetic fields, JCAP10 (2006) 018 [astro-ph/0606534] [INSPIRE].
  45. [45]
    R. Durrer, L. Hollenstein and R.K. Jain, Can slow roll inflation induce relevant helical magnetic fields?, JCAP03 (2011) 037 [arXiv:1005.5322] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    M. Bastero-Gil, J. Santiago, L. Ubaldi and R. Vega-Morales, Vector dark matter production at the end of inflation, JCAP04 (2019) 015 [arXiv:1810.07208] [INSPIRE].
  47. [47]
    G.R. Dvali, Removing the cosmological bound on the axion scale, hep-ph/9505253 [INSPIRE].
  48. [48]
    M. Dine and A. Anisimov, Is there a Peccei-Quinn phase transition?, JCAP07 (2005) 009 [hep-ph/0405256] [INSPIRE].
  49. [49]
    F. Takahashi and M. Yamada, Strongly broken Peccei-Quinn symmetry in the early Universe, JCAP10 (2015) 010 [arXiv:1507.06387] [INSPIRE].
  50. [50]
    M.S. Turner, Cosmic and Local Mass Density of Invisible Axions, Phys. Rev.D 33 (1986) 889 [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev.D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].
  52. [52]
    K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP09 (2008) 005 [arXiv:0806.0497] [INSPIRE].
  53. [53]
    D.H. Lyth, Axions and inflation: Sitting in the vacuum, Phys. Rev.D 45 (1992) 3394 [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    K. Strobl and T.J. Weiler, Anharmonic evolution of the cosmic axion density spectrum, Phys. Rev.D 50 (1994) 7690 [astro-ph/9405028] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Kobayashi, R. Kurematsu and F. Takahashi, Isocurvature Constraints and Anharmonic Effects on QCD Axion Dark Matter, JCAP09 (2013) 032 [arXiv:1304.0922] [INSPIRE].
  56. [56]
    A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett.48 (1982) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett.48 (1982) 1156 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.D. Linde and D.H. Lyth, Axionic domain wall production during inflation, Phys. Lett.B 246 (1990) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D.H. Lyth and E.D. Stewart, Constraining the inflationary energy scale from axion cosmology, Phys. Lett.B 283 (1992) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].
  61. [61]
    Ya. B. Zeldovich, I. Yu. Kobzarev and L.B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz.67 (1974) 3 [INSPIRE].ADSGoogle Scholar
  62. [62]
    G.B. Gelmini, M. Gleiser and E.W. Kolb, Cosmology of Biased Discrete Symmetry Breaking, Phys. Rev.D 39 (1989) 1558 [INSPIRE].ADSGoogle Scholar
  63. [63]
    D. Coulson, Z. Lalak and B.A. Ovrut, Biased domain walls, Phys. Rev.D 53 (1996) 4237 [INSPIRE].ADSGoogle Scholar
  64. [64]
    S.E. Larsson, S. Sarkar and P.L. White, Evading the cosmological domain wall problem, Phys. Rev.D 55 (1997) 5129 [hep-ph/9608319] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Gorghetto, E. Hardy and G. Villadoro, Axions from Strings: the Attractive Solution, JHEP07 (2018) 151 [arXiv:1806.04677] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, Long-term dynamics of cosmological axion strings, PTEP2018 (2018) 091E01 [arXiv:1806.05566] [INSPIRE].
  67. [67]
    A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev.D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
  68. [68]
    R. Brito et al., Stochastic and resolvable gravitational waves from ultralight bosons, Phys. Rev. Lett.119 (2017) 131101 [arXiv:1706.05097] [INSPIRE].
  69. [69]
    P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP12 (2015) 034 [arXiv:1502.06506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    J.R.C. Cuissa and D.G. Figueroa, Lattice formulation of axion inflation. Application to preheating, JCAP06 (2019) 002 [arXiv:1812.03132] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.International Centre for Theoretical PhysicsTriesteItaly
  2. 2.SISSA and INFN Sezione di TriesteTriesteItaly
  3. 3.Institute for Fundamental Physics of the UniverseTriesteItaly

Personalised recommendations