Advertisement

Parton branching at amplitude level

  • Jeffrey R. Forshaw
  • Jack HolguinEmail author
  • Simon Plätzer
Open Access
Regular Article - Theoretical Physics

Abstract

We present an algorithm that evolves hard processes at the amplitude level by dressing them iteratively with (massless) quarks and gluons. The algorithm interleaves collinear emissions with soft emissions and includes Coulomb/Glauber exchanges. It includes all orders in Nc, is spin dependent and is able to accommodate kinematic recoils. Although it is specified at leading logarithmic accuracy, the framework should be sufficient to go beyond. Coulomb exchanges make the factorisation of collinear and soft emissions highly non-trivial. In the absence of Coulomb exchanges, we show how factorisation works out and how a partial factorisation is manifest in the presence of Coulomb exchanges. Finally, we illustrate the use of the algorithm by deriving DGLAP evolution and computing the resummed thrust, hemisphere jet mass and gaps-between-jets distributions in e+e.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s + γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  2. [2]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  3. [3]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  4. [4]
    T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Lect. Notes Phys.896 (2015) pp.1 [arXiv:1410.1892] [INSPIRE].
  5. [5]
    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Platzer and S. Gieseke, Dipole Showers and Automated NLO Matching in HERWIG++, Eur. Phys. J.C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].
  7. [7]
    S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP12 (2003) 045 [hep-ph/0310083] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J.C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].
  9. [9]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  10. [10]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J.C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].
  11. [11]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  12. [12]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett.B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  13. [13]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP08 (2006) 059 [hep-ph/0604094] [INSPIRE].
  14. [14]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Colour basis independent calculation, JHEP09 (2008) 128 [arXiv:0808.1269] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP06 (2010) 038 [arXiv:1001.4082] [INSPIRE].
  16. [16]
    S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP07 (2012) 026 [arXiv:1112.4405] [INSPIRE].
  17. [17]
    J.R. Forshaw, M.H. Seymour and A. Siodmok, On the Breaking of Collinear Factorization in QCD, JHEP11 (2012) 066 [arXiv:1206.6363] [INSPIRE].
  18. [18]
    M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy of parton showers: a fixed-order study, JHEP09 (2018) 033 [arXiv:1805.09327] [INSPIRE].
  19. [19]
    S. Plätzer, M. Sjodahl and J. Thorén, Color matrix element corrections for parton showers, JHEP11 (2018) 009 [arXiv:1808.00332] [INSPIRE].
  20. [20]
    S. Platzer and M. Sjodahl, Subleading N cimproved Parton Showers, JHEP07 (2012) 042 [arXiv:1201.0260] [INSPIRE].
  21. [21]
    Z. Nagy and D.E. Soper, What is a parton shower?, Phys. Rev.D 98 (2018) 014034 [arXiv:1705.08093] [INSPIRE].
  22. [22]
    Z. Nagy and D.E. Soper, Parton showers with quantum interference: Leading color, with spin, JHEP07 (2008) 025 [arXiv:0805.0216] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP06 (2012) 044 [arXiv:1202.4496] [INSPIRE].
  24. [24]
    Z. Nagy and D.E. Soper, Effects of subleading color in a parton shower, JHEP07 (2015) 119 [arXiv:1501.00778] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Ángeles Martínez, M. De Angelis, J.R. Forshaw, S. Plätzer and M.H. Seymour, Soft gluon evolution and non-global logarithms, JHEP05 (2018) 044 [arXiv:1802.08531] [INSPIRE].
  26. [26]
    Z. Nagy and D.E. Soper, Parton showers with more exact color evolution, Phys. Rev. D 99 (2019) 054009 [arXiv:1902.02105] [INSPIRE].
  27. [27]
    R. Ángeles Martínez, J.R. Forshaw and M.H. Seymour, Coulomb gluons and the ordering variable, JHEP12 (2015) 091 [arXiv:1510.07998] [INSPIRE].
  28. [28]
    R. Ángeles Martínez, J.R. Forshaw and M.H. Seymour, Ordering multiple soft gluon emissions, Phys. Rev. Lett.116 (2016) 212003 [arXiv:1602.00623] [INSPIRE].
  29. [29]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP08 (2002) 006 [hep-ph/0206076] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    J.C. Collins and D.E. Soper, The Theorems of Perturbative QCD, Ann. Rev. Nucl. Part. Sci.37 (1987) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys.B 308 (1988) 833 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e +e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP46 (1977) 641 [INSPIRE].ADSGoogle Scholar
  33. [33]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].Google Scholar
  34. [34]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].
  35. [35]
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troian, Basics of perturbative QCD, (1991) [INSPIRE].
  36. [36]
    Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept.58 (1980) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept.100 (1983) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev.D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
  39. [39]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept.494 (2010) 1 [arXiv:0812.1594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. Bewick, S. Ferrario Ravasio, P. Richardson and M.H. Seymour, Logarithmic Accuracy of Angular-Ordered Parton Showers, arXiv:1904.11866 [INSPIRE].
  41. [41]
    Y.L. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form-factor, Phys. Lett.B 631 (2005) 118 [hep-ph/0508130] [INSPIRE].
  42. [42]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP01 (2011) 024 [arXiv:0909.5593] [INSPIRE].
  44. [44]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  45. [45]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE].
  47. [47]
    T.C. Rogers and P.J. Mulders, No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons, Phys. Rev.D 81 (2010) 094006 [arXiv:1001.2977] [INSPIRE].
  48. [48]
    T.C. Rogers, Extra spin asymmetries from the breakdown of transverse-momentum-dependent factorization in hadron-hadron collisions, Phys. Rev.D 88 (2013) 014002 [arXiv:1304.4251] [INSPIRE].
  49. [49]
    S.M. Aybat and G.F. Sterman, Soft-Gluon Cancellation, Phases and Factorization with Initial-State Partons, Phys. Lett.B 671 (2009) 46 [arXiv:0811.0246] [INSPIRE].
  50. [50]
    P.Z. Skands and S. Weinzierl, Some remarks on dipole showers and the DGLAP equation, Phys. Rev.D 79 (2009) 074021 [arXiv:0903.2150] [INSPIRE].
  51. [51]
    Z. Nagy and D.E. Soper, Final state dipole showers and the DGLAP equation, JHEP05 (2009) 088 [arXiv:0901.3587] [INSPIRE].
  52. [52]
    Y.L. Dokshitzer and G. Marchesini, Monte Carlo and large angle gluon radiation, JHEP03 (2009) 117 [arXiv:0809.1749] [INSPIRE].
  53. [53]
    P. Binetruy, Summing Leading Logs in Thrust Distributions, Phys. Lett.91B (1980) 245 [INSPIRE].
  54. [54]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e +e event shape distributions, Nucl. Phys.B 407 (1993) 3 [INSPIRE].
  55. [55]
    T. Becher and M.D. Schwartz, A precise determination of α sfrom LEP thrust data using effective field theory, JHEP07 (2008) 034 [arXiv:0803.0342] [INSPIRE].
  56. [56]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev.D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].
  57. [57]
    K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite N cbeyond leading order, JHEP03 (2015) 094 [arXiv:1501.00475] [INSPIRE].
  58. [58]
    Y. Hagiwara, Y. Hatta and T. Ueda, Hemisphere jet mass distribution at finite N c, Phys. Lett.B 756 (2016) 254 [arXiv:1507.07641] [INSPIRE].
  59. [59]
    J. Keates and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Fixed order calculation, JHEP04 (2009) 040 [arXiv:0902.0477] [INSPIRE].
  60. [60]
    S. Plätzer, Summing Large-N Towers in Colour Flow Evolution, Eur. Phys. J.C 74 (2014) 2907 [arXiv:1312.2448] [INSPIRE].
  61. [61]
    M. De Angelis, Non-global Logarithms beyond Leading Colour, talk at QCD@LHC 2018, 27-31 August 2018, Dresden, Germany [https://indico.cern.ch/event/662485/].
  62. [62]
    J.R. Forshaw and S. Plätzer, Soft Gluon Evolution beyond Leading Colour, talks at HARPS meeting, 29-31 October 2018, Genova, Italy [https://indico.cern.ch/event/729453/].
  63. [63]
    D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun.161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  64. [64]
    L.J. Dixon, Calculating scattering amplitudes efficiently, in QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-95, Boulder, U.S.A., 4-30 June 1995, pp. 539-584 (1996) [hep-ph/9601359] [INSPIRE].
  65. [65]
    W. Kilian, T. Ohl, J. Reuter and C. Speckner, QCD in the Color-Flow Representation, JHEP10 (2012) 022 [arXiv:1206.3700] [INSPIRE].
  66. [66]
    J.C. Collins, Spin Correlations in Monte Carlo Event Generators, Nucl. Phys.B 304 (1988) 794 [INSPIRE].
  67. [67]
    I.G. Knowles, A Linear Algorithm for Calculating Spin Correlations in Hadronic Collisions, Comput. Phys. Commun.58 (1990) 271 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P. Richardson, Spin correlations in Monte Carlo simulations, JHEP11 (2001) 029 [hep-ph/0110108] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Consortium for Fundamental Physics, School of Physics & AstronomyUniversity of ManchesterManchesterUnited Kingdom
  2. 2.Particle Physics, Faculty of PhysicsUniversity of ViennaWienAustria

Personalised recommendations