Advertisement

On the impact of Majorana masses in gravity-matter systems

  • Gustavo P. de BritoEmail author
  • Yuta Hamada
  • Antonio D. Pereira
  • Masatoshi Yamada
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the Higgs-Yukawa system with Majorana masses of a fermion within asymptotically safe quantum gravity. Using the functional renormalization group method we derive the beta functions of the Majorana masses and the Yukawa coupling constant and discuss the possibility of a non-trivial fixed point for the Yukawa coupling constant. In the gravitational sector we take into account higher derivative terms such as R2 and RμνRμν in addition to the Einstein-Hilbert term for our truncation. For a certain value of the gravitational coupling constants and the Majorana masses, the Yukawa coupling constant has a non-trivial fixed point value and becomes an irrelevant parameter being thus a prediction of the theory. We also discuss consequences due to the Majorana mass terms to the running of the quartic coupling constant in the scalar sector.

Keywords

Models of Quantum Gravity Nonperturbative Effects Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity: An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), chapter 16.Google Scholar
  2. [2]
    M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel.9 (2006) 5 [INSPIRE].CrossRefzbMATHGoogle Scholar
  3. [3]
    M. Niedermaier, The Asymptotic safety scenario in quantum gravity: An Introduction, Class. Quant. Grav.24 (2007) R171 [gr-qc/0610018] [INSPIRE].
  4. [4]
    R. Percacci, Asymptotic Safety, arXiv:0709.3851 [INSPIRE].
  5. [5]
    M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys.14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    S. Nagy, Lectures on renormalization and asymptotic safety, Annals Phys.350 (2014) 310 [arXiv:1211.4151] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys.324 (2009) 414 [arXiv:0805.2909] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    R. Percacci, 100 Years of General Relativity. Vol. 3: An Introduction to Covariant Quantum Gravity and Asymptotic Safety, World Scientific, New York U.S.A. (2017).Google Scholar
  9. [9]
    A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci.5 (2019) 47 [arXiv:1810.07615] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group, Cambridge University Press, Cambridge U.K. (2019).zbMATHGoogle Scholar
  11. [11]
    C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].
  12. [12]
    H. Kawai and M. Ninomiya, Renormalization Group and Quantum Gravity, Nucl. Phys.B 336 (1990) 115 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys. Rept.519 (2012) 127 [arXiv:1203.3591] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    J. Laiho, S. Bassler, D. Coumbe, D. Du and J.T. Neelakanta, Lattice Quantum Gravity and Asymptotic Safety, Phys. Rev.D 96 (2017) 064015 [arXiv:1604.02745] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl.131 (1998) 395 [hep-th/9802039] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept.363 (2002) 223 [hep-ph/0005122] [INSPIRE].
  17. [17]
    K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications, Int. J. Mod. Phys.B 14 (2000) 1249 [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept.348 (2001) 91 [hep-th/0002034] [INSPIRE].
  19. [19]
    J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys.1 (2003) 1 [hep-th/0110026] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys.322 (2007) 2831 [hep-th/0512261] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys.852 (2012) 287 [hep-ph/0611146] [INSPIRE].
  22. [22]
    B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes Phys.852 (2012) 49 [cond-mat/0702365] [INSPIRE].
  23. [23]
    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept.511 (2012) 177 [arXiv:1003.1366] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys.G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev.D 57 (1998) 971 [hep-th/9605030] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys.102 (1999) 181 [hep-th/9907027] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev.D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].
  28. [28]
    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett.97 (2006) 221301 [hep-th/0607128] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett.A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  31. [31]
    D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys.B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys.326 (2011) 463 [arXiv:1006.0099] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity, Phys. Rev. Lett.106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett.B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].
  36. [36]
    D. Benedetti, On the number of relevant operators in asymptotically safe gravity, EPL102 (2013) 20007 [arXiv:1301.4422] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow equations in quantum gravity, Phys. Rev.D 89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].
  38. [38]
    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev.D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global Flows in Quantum Gravity, Phys. Rev.D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].
  40. [40]
    N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local Quantum Gravity, Phys. Rev.D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].ADSGoogle Scholar
  41. [41]
    H. Gies, B. Knorr and S. Lippoldt, Generalized Parametrization Dependence in Quantum Gravity, Phys. Rev.D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].
  42. [42]
    H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is Asymptotically Safe, Phys. Rev. Lett.116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: Asymptotically safe and sound, Phys. Rev.D 95 (2017) 086013 [arXiv:1609.04813] [INSPIRE].
  44. [44]
    N. Christiansen, Four-Derivative Quantum Gravity Beyond Perturbation Theory, arXiv:1612.06223 [INSPIRE].
  45. [45]
    T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J.C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev.D 96 (2017) 065020 [arXiv:1707.01397] [INSPIRE].
  47. [47]
    B. Knorr, Infinite order quantum-gravitational correlations, Class. Quant. Grav.35 (2018) 115005 [arXiv:1710.07055] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev.D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].
  49. [49]
    K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev.D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].
  50. [50]
    K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev.D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Percacci and D. Perini, Constraints on matter from asymptotic safety, Phys. Rev.D 67 (2003) 081503 [hep-th/0207033] [INSPIRE].
  52. [52]
    R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev.D 68 (2003) 044018 [hep-th/0304222] [INSPIRE].
  53. [53]
    G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav.27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].
  54. [54]
    O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa systems, Phys. Lett.B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys.13 (2011) 125012 [arXiv:1104.5366] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev.D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev.D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].
  58. [58]
    P. Donà, A. Eichhorn and R. Percacci, Consistency of matter models with asymptotically safe quantum gravity, Can. J. Phys.93 (2015) 988 [arXiv:1410.4411] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett.B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  60. [60]
    K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav.33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev.D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].
  62. [62]
    P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev.D 93 (2016) 044049 [Erratum ibid.D 93 (2016) 129904][arXiv:1512.01589] [INSPIRE].
  63. [63]
    J. Meibohm and J.M. Pawlowski, Chiral fermions in asymptotically safe quantum gravity, Eur. Phys. J.C 76 (2016) 285 [arXiv:1601.04597] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev.D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    A. Eichhorn and S. Lippoldt, Quantum gravity and Standard-Model-like fermions, Phys. Lett.B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems, JHEP05 (2017) 093 [arXiv:1702.06539] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  67. [67]
    Y. Hamada and M. Yamada, Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system, JHEP08 (2017) 070 [arXiv:1703.09033] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  68. [68]
    N. Christiansen, A. Eichhorn and A. Held, Is scale-invariance in gauge-Yukawa systems compatible with the graviton?, Phys. Rev.D 96 (2017) 084021 [arXiv:1705.01858] [INSPIRE].
  69. [69]
    A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for matter, Phys. Rev.D 96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].
  70. [70]
    A. Eichhorn, The asymptotic safety paradigm for quantum spacetime and matter, in Black Holes, Gravitational Waves and Spacetime Singularities, Rome Italy (2017).Google Scholar
  71. [71]
    A. Eichhorn, S. Lippoldt and V. Skrinjar, Nonminimal hints for asymptotic safety, Phys. Rev.D 97 (2018) 026002 [arXiv:1710.03005] [INSPIRE].
  72. [72]
    N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev.D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev.D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].
  74. [74]
    N. Alkofer and F. Saueressig, Asymptotically safe f (R)-gravity coupled to matter I: the polynomial case, Annals Phys.396 (2018) 173 [arXiv:1802.00498] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum gravity, SciPost Phys.5 (2018) 031 [arXiv:1804.00012] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is quantum gravity?, Phys. Lett.B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  77. [77]
    A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity, Phys. Rev.D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].
  78. [78]
    J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev.D 99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].
  79. [79]
    A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys.A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  80. [80]
    P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev.D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].ADSMathSciNetGoogle Scholar
  81. [81]
    G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and field parametrization dependence in the f (R) truncation, Phys. Rev.D 98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].
  82. [82]
    U. Harst and M. Reuter, QED coupled to QEG, JHEP05 (2011) 119 [arXiv:1101.6007] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  83. [83]
    N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality problem, Phys. Lett.B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  84. [84]
    A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic safety, JHEP01 (2018) 030 [arXiv:1709.07252] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett.B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    A. Eichhorn, A. Held and C. Wetterich, Quantum-gravity predictions for the fine-structure constant, Phys. Lett.B 782 (2018) 198 [arXiv:1711.02949] [INSPIRE].CrossRefADSGoogle Scholar
  87. [87]
    A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett.121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravitythe resurgence mechanism, Phys. Lett.B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].CrossRefADSGoogle Scholar
  89. [89]
    C. Wetterich, Graviton fluctuations erase the cosmological constant, Phys. Lett.B 773 (2017) 6 [arXiv:1704.08040] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  90. [90]
    P. Minkowski, μeγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.67B (1977) 421 [INSPIRE].
  91. [91]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  92. [92]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys.64 (1980) 1103 [INSPIRE].CrossRefADSGoogle Scholar
  93. [93]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  94. [94]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev.D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  95. [95]
    B. Holdom and J. Ren, Quadratic gravity: from weak to strong, Int. J. Mod. Phys.D 25 (2016) 1643004 [arXiv:1605.05006] [INSPIRE].CrossRefADSGoogle Scholar
  96. [96]
    J.F. Donoghue, Quartic propagators, negative norms and the physical spectrum, Phys. Rev.D 96 (2017) 044007 [arXiv:1704.01533] [INSPIRE].
  97. [97]
    D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP05 (2018) 027 [arXiv:1803.07777] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  98. [98]
    D. Becker, C. Ripken and F. Saueressig, On avoiding Ostrogradski instabilities within Asymptotic Safety, JHEP12 (2017) 121 [arXiv:1709.09098] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  99. [99]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett.B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].CrossRefADSGoogle Scholar
  100. [100]
    A. Nink, Field Parametrization Dependence in Asymptotically Safe Quantum Gravity, Phys. Rev.D 91 (2015) 044030 [arXiv:1410.7816] [INSPIRE].
  101. [101]
    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity I: Einstein theory, JHEP06 (2016) 115 [arXiv:1605.00454] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  102. [102]
    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J.C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].CrossRefADSGoogle Scholar
  103. [103]
    N. Ohta, R. Percacci and A.D. Pereira, f (R, \( {R}_{\mu \nu}^2 \)) at one loop, Phys. Rev.D 97 (2018) 104039 [arXiv:1804.01608] [INSPIRE].
  104. [104]
    G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards phenomenological tests of unimodular asymptotic safety, arXiv:1907.11173 [INSPIRE].
  105. [105]
    J.W. York, Jr., Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys.14 (1973) 456 [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  106. [106]
    D.F. Litim, Optimized renormalization group flows, Phys. Rev.D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].ADSGoogle Scholar
  107. [107]
    P. Donà and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev.D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].
  108. [108]
    A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett.B 777 (2018) 217 [arXiv:1707.01107] [INSPIRE].CrossRefADSGoogle Scholar
  109. [109]
    I.L. Shapiro, Asymptotic Behavior of Effective Yukawa Coupling Constants in Quantum R 2Gravity With Matter, Class. Quant. Grav.6 (1989) 1197 [INSPIRE].CrossRefADSGoogle Scholar
  110. [110]
    I.L. Buchbinder, O.K. Kalashnikov, I.L. Shapiro, V.B. Vologodsky and J.J. Wolfengaut, The Stability of Asymptotic Freedom in Grand Unified Models Coupled to R 2Gravity, Phys. Lett.B 216 (1989) 127 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  111. [111]
    I. Buchbinder, S. Odintsov and I. Shapiro, Effective Action in Quantum Gravity, CRC Press, Boca Raton U.S.A. (1992).Google Scholar
  112. [112]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  113. [113]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  114. [114]
    G.P. Vacca and O. Zanusso, Asymptotic Safety in Einstein Gravity and Scalar-Fermion Matter, Phys. Rev. Lett.105 (2010) 231601 [arXiv:1009.1735] [INSPIRE].CrossRefADSGoogle Scholar
  115. [115]
    L. Bosma, B. Knorr and F. Saueressig, Resolving Spacetime Singularities within Asymptotic Safety, arXiv:1904.04845 [INSPIRE].
  116. [116]
    B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox, arXiv:1907.02903 [INSPIRE].
  117. [117]
    F. Bezrukov, M. Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP10 (2012) 140 [arXiv:1205.2893] [INSPIRE].CrossRefADSGoogle Scholar
  118. [118]
    F. Finster, Local U(2, 2) symmetry in relativistic quantum mechanics, J. Math. Phys.39 (1998) 6276 [hep-th/9703083] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  119. [119]
    H.A. Weldon, Fermions without vierbeins in curved space-time, Phys. Rev.D 63 (2001) 104010 [gr-qc/0009086][INSPIRE].
  120. [120]
    H. Gies and S. Lippoldt, Fermions in gravity with local spin-base invariance, Phys. Rev.D 89 (2014) 064040 [arXiv:1310.2509] [INSPIRE].
  121. [121]
    S. Lippoldt, Spin-base invariance of Fermions in arbitrary dimensions, Phys. Rev.D 91 (2015) 104006 [arXiv:1502.05607] [INSPIRE].ADSMathSciNetGoogle Scholar
  122. [122]
    D. Becker and M. Reuter, En route to Background Independence: Broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys.350 (2014) 225 [arXiv:1404.4537] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  123. [123]
    P. Labus, T.R. Morris and Z.H. Slade, Background independence in a background dependent renormalization group, Phys. Rev.D 94 (2016) 024007 [arXiv:1603.04772] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.CBPF - Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  2. 2.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  3. 3.Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of PhysicsUniversity of CreteHeraklionGreece
  4. 4.Instituto de FísicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations