Gaugino condensation and small uplifts in KKLT

  • Federico CartaEmail author
  • Jakob Moritz
  • Alexander Westphal
Open Access
Regular Article - Theoretical Physics


In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local nature is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decom-pactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.


Flux compactifications Superstring Vacua Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett.114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].
  4. [4]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
  5. [5]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE].
  6. [6]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP01 (2016) 091 [arXiv:1503.07853] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett.B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].ADSzbMATHGoogle Scholar
  8. [8]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE].
  9. [9]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravity-cosmic censorship connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Reece, Photon masses in the landscape and the swampland, JHEP07 (2019) 181 [arXiv:1808.09966] [INSPIRE].
  13. [13]
    M. Montero, A holographic derivation of the weak gravity conjecture, JHEP03 (2019) 157 [arXiv:1812.03978] [INSPIRE].
  14. [14]
    S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, arXiv:1901.08065 [INSPIRE].
  15. [15]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    R. Blumenhagen, I. Valenzuela and F. Wolf, The swampland conjecture and F-term axion monodromy inflation, JHEP07 (2017) 145 [arXiv:1703.05776] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
  20. [20]
    S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    T.W. Grimm, C. Li and E. Palti, Infinite distance networks in field space and charge orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP05 (2019) 176 [arXiv:1812.05016] [INSPIRE].
  23. [23]
    E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland conjectures, JHEP05 (2019) 105 [arXiv:1812.06520] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  25. [25]
    L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela, Constraining neutrino masses, the cosmological constant and BSM physics from the weak gravity conjecture, JHEP11 (2017) 066 [arXiv:1706.05392] [INSPIRE].
  26. [26]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland, and the missing corner, PoS(TASI2017)015.
  27. [27]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
  28. [28]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the cosmological implications of the string swampland, Phys. Lett.B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, arXiv:1807.05193 [INSPIRE].
  30. [30]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    F. Denef, A. Hebecker and T. Wrase, De Sitter swampland conjecture and the Higgs potential, Phys. Rev.D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    C. Roupec and T. Wrase, De Sitter extrema and the swampland, Fortsch. Phys.67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys.A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The landscape, the swampland and the era of precision cosmology, Fortsch. Phys.67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE].Google Scholar
  35. [35]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do we live in the swampland?, JHEP12 (2018) 032 [arXiv:1809.00478] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking, JHEP11 (2018) 142 [arXiv:1809.01475] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    A. Hebecker and T. Wrase, The asymptotic dS swampland conjectureA simplified derivation and a potential loophole, Fortsch. Phys.67 (2019) 1800097 [arXiv:1810.08182] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    S.P. de Alwis, On potentials from fluxes, Phys. Rev.D 68 (2003) 126001 [hep-th/0307084] [INSPIRE].
  40. [40]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev.D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].
  42. [42]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP09 (2009) 114 [arXiv:0907.2041] [INSPIRE].
  43. [43]
    G. Shiu and Y. Sumitomo, Stability constraints on classical de Sitter vacua, JHEP09 (2011) 052 [arXiv:1107.2925] [INSPIRE].
  44. [44]
    U.H. Danielsson et al., De Sitter hunting in a classical landscape, Fortsch. Phys.59 (2011) 897 [arXiv:1103.4858] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter space in string theory, Phys. Rev. Lett.115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].
  46. [46]
    D. Andriot and J. Bl abäck, Refining the boundaries of the classical de Sitter landscape, JHEP03 (2017) 102 [Erratum ibid.03 (2018) 083] [arXiv:1609.00385] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP03 (2018) 054 [arXiv:1710.08886] [INSPIRE].
  48. [48]
    M. Dine and N. Seiberg, Is the superstring weakly coupled?, Phys. Lett.B 162 (1985) 299.ADSMathSciNetGoogle Scholar
  49. [49]
    E. Silverstein, (A)dS backgrounds from asymmetric orientifolds, Clay Mat. Proc.1 (2002) 179 [hep-th/0106209] [INSPIRE].
  50. [50]
    A. Maloney, E. Silverstein and A. Strominger, De Sitter space in noncritical string theory, in the proceedings of The future of theoretical physics and cosmology: Celebrating Stephen Hawking’s 60 thbirthday, Workshop and Symposium, January 7-10, Cambridge, U.K. (2002), hep-th/0205316 [INSPIRE].
  51. [51]
    M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New solutions with accelerated expansion in string theory, JHEP12 (2014) 050 [arXiv:1310.5297] [INSPIRE].
  52. [52]
    A. Saltman and E. Silverstein, A new handle on de Sitter compactifications, JHEP01 (2006) 139 [hep-th/0411271] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, in Strings, gauge fields and the geometry behind: the legacy of Maximilian Kreuzer, A. Rebhan et al. eds., World Scientific, Singapore (2009), arXiv:0908.0756 [INSPIRE].
  54. [54]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav.27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    X. Dong et al., FRW solutions and holography from uplifted AdS/CFT, Phys. Rev.D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].
  56. [56]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev.D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP10 (2003) 056 [hep-th/0309187] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP11 (2004) 085 [hep-th/0408054] [INSPIRE].ADSGoogle Scholar
  60. [60]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    A. Westphal, De Sitter string vacua from Kähler uplifting, JHEP03 (2007) 102 [hep-th/0611332] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, De Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSzbMATHGoogle Scholar
  64. [64]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP10 (2012) 163 [arXiv:1208.3208] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    M. Cicoli et al., Explicit de Sitter flux vacua for global string models with chiral matter, JHEP05 (2014) 001 [arXiv:1312.0014] [INSPIRE].
  66. [66]
    M. Rummel and Y. Sumitomo, De Sitter vacua from a D-term generated racetrack uplift, JHEP01 (2015) 015 [arXiv:1407.7580] [INSPIRE].zbMATHGoogle Scholar
  67. [67]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A.P. Braun, M. Rummel, Y. Sumitomo and R. Valandro, De Sitter vacua from a D-term generated racetrack potential in hypersurface Calabi-Yau compactifications, JHEP12 (2015) 033 [arXiv:1509.06918] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    A. Retolaza and A. Uranga, De Sitter uplift with dynamical SUSY breaking, JHEP04 (2016) 137 [arXiv:1512.06363] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  70. [70]
    D. Gallego, M.C.D. Marsh, B. Vercnocke and T. Wrase, A new class of de Sitter vacua in type IIB large volume compactifications, JHEP10 (2017) 193 [arXiv:1707.01095] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, De Sitter vs quintessence in string theory, Fortsch. Phys.67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].MathSciNetGoogle Scholar
  72. [72]
    J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and dark energy, arXiv:1811.01959 [INSPIRE].
  73. [73]
    J.J. Heckman et al., Pixelated dark energy, arXiv:1901.10489 [INSPIRE].
  74. [74]
    D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP11 (2006) 031 [hep-th/0607050] [INSPIRE].ADSMathSciNetGoogle Scholar
  75. [75]
    D. Baumann et al., D3-brane potentials from fluxes in AdS/CFT, JHEP06 (2010) 072 [arXiv:1001.5028] [INSPIRE].
  76. [76]
    A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP04 (2011) 061 [arXiv:1012.4018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP07 (2003) 056 [hep-th/0212209] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    B. Freivogel and M. Lippert, Evidence for a bound on the lifetime of de Sitter space, JHEP12 (2008) 096 [arXiv:0807.1104] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  79. [79]
    F. Denef, Les Houches lectures on constructing string vacua, Les Houches87 (2008) 483 [arXiv:0803.1194] [INSPIRE].Google Scholar
  80. [80]
    S. Sethi, Supersymmetry breaking by fluxes, JHEP10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  81. [81]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev.D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The tension between 10d supergravity and dS uplifts, Fortsch. Phys.67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].
  83. [83]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  86. [86]
    G. Veneziano and S. Yankielowicz, An effective lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett.B 113 (1982) 231.ADSGoogle Scholar
  87. [87]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. Phys.B 241 (1984) 493 [INSPIRE].ADSGoogle Scholar
  88. [88]
    D. Amati et al., Nonperturbative aspects in supersymmetric gauge theories, Phys. Rept.162 (1988) 169 [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    M. Dine and Y. Shirman, Remarks on the racetrack scheme, Phys. Rev.D 63 (2001) 046005 [hep-th/9906246] [INSPIRE].
  90. [90]
    I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M) gauge theories, Nucl. Phys.B 578 (2000) 123 [hep-th/0002159].ADSMathSciNetzbMATHGoogle Scholar
  91. [91]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSBresolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSzbMATHGoogle Scholar
  92. [92]
    A. Hebecker and J. March-Russell, The ubiquitous throat, Nucl. Phys.B 781 (2007) 99 [hep-th/0607120] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  93. [93]
    S. Kachru et al., Towards inflation in string theory, JCAP10 (2003) 013 [hep-th/0308055] [INSPIRE].
  94. [94]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSGoogle Scholar
  95. [95]
    A. Almuhairi and J. Polchinski, Magnetic AdS × R 2: supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
  96. [96]
    J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].
  97. [97]
    D. Cohen-Maldonado, J. Diaz, T. Van Riet and B. Vercnocke, From black holes to flux throats, Fortsch. Phys.64 (2016) 317 [arXiv:1511.07453] [INSPIRE].ADSzbMATHGoogle Scholar
  98. [98]
    I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting runaways, Fortsch. Phys.67 (2019) 1800100 [arXiv:1809.06861] [INSPIRE].MathSciNetGoogle Scholar
  99. [99]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  100. [100]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric instanton calculus (gauge theories with matter), Nucl. Phys.B 260 (1985) 157 [INSPIRE].ADSMathSciNetGoogle Scholar
  101. [101]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, On brane gaugino condensates in 10d, JHEP04 (2019) 008 [arXiv:1812.06097] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  102. [102]
    R. Kallosh, Gaugino Condensation and Geometry of the Perfect Square, Phys. Rev.D 99 (2019) 066003 [arXiv:1901.02023] [INSPIRE].
  103. [103]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  104. [104]
    M. Kim and L. McAllister, Monodromy charge in D7-brane inflation, arXiv:1812.03532 [INSPIRE].
  105. [105]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d perspective, JHEP06 (2019) 019 [arXiv:1902.01410] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  106. [106]
    F.F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT AdS vacuum and uplifting, arXiv:1902.01415 [INSPIRE].
  107. [107]
    S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev.D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].
  108. [108]
    G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of Warped Flux Compactifications, JHEP06 (2008) 024 [arXiv:0803.3068] [INSPIRE].ADSMathSciNetGoogle Scholar
  109. [109]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys.4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  110. [110]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys.B 699 (2004) 387 [hep-th/0403067] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  111. [111]
    M. Demirtas, C. Long, L. McAllister and M. Stillman, The Kreuzer-Skarke axiverse, arXiv:1808.01282 [INSPIRE].
  112. [112]
    F. Denef et al., Fixing all moduli in a simple F-theory compactification, Adv. Theor. Math. Phys.9 (2005) 861 [hep-th/0503124] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Deutches Electronen-SynchrotronDESYHamburgGermany

Personalised recommendations