Advertisement

Quenched coupling, entangled equilibria, and correlated composite operators: a tale of two O(N) models

  • Souvik Banerjee
  • Julius Engelsöy
  • Jorge Larana-Aragon
  • Bo Sundborg
  • Larus Thorlacius
  • Nico WintergerstEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

A macroscopic version of Einstein-Podolsky-Rosen entanglement is obtained by quenching a quadratic coupling between two O(N) vector models. A quench of the mixed vacuum produces an excited entangled state, reminiscent of purified thermal equilibrium, whose properties can be studied analytically in the free limit of the individual field theories. The decoupling of different wavelength modes in free field theory prevents true thermalisation but a more subtle difference is that the density operator obtained by a partial trace does not commute with the post-quench Hamiltonian. Generalized thermal behaviour is obtained at late times, in the limit of weak initial mixing or a smooth but rapid quench. More surprisingly, late-time correlation functions of composite operators in the post-quench free field theory share interesting properties with correlators in strongly coupled systems. We propose a holographic interpretation of our result.

Keywords

AdS-CFT Correspondence Effective Field Theories Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    I. Amado, B. Sundborg, L. Thorlacius and N. Wintergerst, Probing emergent geometry through phase transitions in free vector and matrix models, JHEP 02 (2017) 005 [arXiv:1612.03009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    I. Amado, B. Sundborg, L. Thorlacius and N. Wintergerst, Black holes from large N singlet models, JHEP 03 (2018) 075 [arXiv:1712.06963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
  4. [4]
    W. Cottrell, B. Freivogel, D.M. Hofman and S.F. Lokhande, How to Build the Thermofield Double State, JHEP 02 (2019) 058 [arXiv:1811.11528] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  6. [6]
    A. Einstein, B. Podolsky and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    S.-J. Rey and V. Rosenhaus, Scanning Tunneling Macroscopy, Black Holes and AdS/CFT Bulk Locality, JHEP 07 (2014) 050 [arXiv:1403.3943] [INSPIRE].
  8. [8]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  9. [9]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
  10. [10]
    A. Jevicki and J. Yoon, Bulk from Bi-locals in Thermo Field CFT, JHEP 02 (2016) 090 [arXiv:1503.08484] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Jevicki and K. Suzuki, Thermofield Duality for Higher Spin Rindler Gravity, JHEP 02 (2016) 094 [arXiv:1508.07956] [INSPIRE].
  12. [12]
    S. Banerjee, K. Papadodimas, S. Raju, P. Samantray and P. Shrivastava, A Bound on Thermal Relativistic Correlators at Large Spacelike Momenta, arXiv:1902.07203 [INSPIRE].
  13. [13]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002)213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    B.L. Schumaker and C.M. Caves, New formalism for two-photon quantum optics. 2. Mathematical foundation and compact notation, Phys. Rev. A 31 (1985) 3093 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405.ADSCrossRefGoogle Scholar
  16. [16]
    F.H.L. Essler, G. Mussardo and M. Panfil, Generalized Gibbs Ensembles for Quantum Field Theories, Phys. Rev. A 91 (2015) 051602 [arXiv:1411.5352] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Sotiriadis, Memory-preserving equilibration after a quantum quench in a one-dimensional critical model, Phys. Rev. A 94 (2016) 031605 [arXiv:1507.07915] [INSPIRE].
  18. [18]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].
  19. [19]
    D. Flassig, A. Pritzel and N. Wintergerst, Black holes and quantumness on macroscopic scales, Phys. Rev. D 87 (2013) 084007 [arXiv:1212.3344] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Mollabashi, N. Shiba and T. Takayanagi, Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy, JHEP 04 (2014) 185 [arXiv:1403.1393] [INSPIRE].
  21. [21]
    S. Sotiriadis and J. Cardy, Inhomogeneous Quantum Quenches, arXiv:0808.0116 [INSPIRE].
  22. [22]
    S. Sotiriadis, P. Calabrese and J. Cardy, Quantum quench from a thermal initial state, Europhys. Lett. 87 (2009) 20002 [arXiv:0903.0895].ADSCrossRefGoogle Scholar
  23. [23]
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1984).Google Scholar
  24. [24]
    S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:1401.0560] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.R. Das, D.A. Galante and R.C. Myers, Smooth and fast versus instantaneous quenches in quantum field theory, JHEP 08 (2015) 073 [arXiv:1505.05224] [INSPIRE].
  26. [26]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Witten, Spacetime reconstruction, in John Schwarz 60, 3-4 November 2001 [http://theory.caltech.edu/jhs60/witten/1.html].
  30. [30]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E.S. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Giombi, Higher SpinCFT Duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, U.S.A., 1-26 June 2015, pp. 137-214 (2017) [DOI: https://doi.org/10.1142/9789813149441_0003] [arXiv:1607.02967] [INSPIRE].
  35. [35]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.The Oskar Klein Centre for Cosmoparticle Physics & Department of PhysicsStockholm UniversityStockholmSweden
  3. 3.University of Iceland, Science InstituteReykjavikIceland
  4. 4.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations