Universal lowest-twist in CFTs from holography
- 158 Downloads
- 4 Citations
Abstract
We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge CT. Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix.
Keywords
AdS-CFT Correspondence Conformal Field Theory Field Theories in Higher DimensionsNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [2]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
- [4]I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetGoogle Scholar
- [5]J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [6]J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [7]A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
- [8]A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].
- [9]T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
- [10]C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [11]B. Chen and J.-q. Wu, Holographic Entanglement Entropy For a Large Class of States in 2D CFT, JHEP09 (2016) 015 [arXiv:1605.06753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [12]B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE].
- [13]S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [14]D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].
- [15]T. Anous and J. Sonner, Phases of scrambling in eigenstates, SciPost Phys.7 (2019) 003 [arXiv:1903.03143] [INSPIRE].ADSCrossRefGoogle Scholar
- [16]A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3/CFT 2, JHEP05 (2016) 109 [arXiv:1603.08925] [INSPIRE].Google Scholar
- [17]H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP09 (2017) 102 [arXiv:1703.09727] [INSPIRE].ADSCrossRefGoogle Scholar
- [18]P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [19]E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].
- [20]E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].
- [21]T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [22]T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [23]M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].
- [24]A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Hawking from Catalan, JHEP05 (2016) 069 [arXiv:1510.00014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [25]N. Anand, H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, An Exact Operator That Knows Its Location, JHEP02 (2018) 012 [arXiv:1708.04246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [26]H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, The AdS 3propagator and the fate of locality, JHEP04 (2018) 075 [arXiv:1712.02351] [INSPIRE].Google Scholar
- [27]A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].
- [28]H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [29]F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [30]A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE].
- [31]A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE].ADSCrossRefGoogle Scholar
- [32]A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].
- [33]A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [34]M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [35]E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [36]E. Dyer, D.Z. Freedman and J. Sully, Spinning Geodesic Witten Diagrams, JHEP11 (2017) 060 [arXiv:1702.06139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [37]A. Castro, E. Llabrés and F. Rejon-Barrera, Geodesic Diagrams, Gravitational Interactions & OPE Structures, JHEP06 (2017) 099 [arXiv:1702.06128] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [38]R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP08 (2010) 067 [arXiv:1003.5357] [INSPIRE].
- [39]R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP08 (2010) 035 [arXiv:1004.2055] [INSPIRE].
- [40]J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff ’s theorem and C-function, Class. Quant. Grav.27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [41]R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984) [INSPIRE].
- [42]M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys.98 (1985) 391 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [43]S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav.22 (2005) 2881 [hep-th/0503045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [44]E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev.D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].ADSMathSciNetGoogle Scholar
- [45]F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [46]P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev.D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].
- [47]D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
- [48]E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
- [49]L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in AdS/CFT, JHEP02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [50]J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys.A 17 (1984) L385 [INSPIRE].ADSMathSciNetGoogle Scholar
- [51]J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [52]H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations and Super-Virasoro Blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [53]C.P. Herzog and K.-W. Huang, Stress Tensors from Trace Anomalies in Conformal Field Theories, Phys. Rev.D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE].
- [54]A. Cappelli and A. Coste, On the Stress Tensor of Conformal Field Theories in Higher Dimensions, Nucl. Phys.B 314 (1989) 707 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [55]K.-W. Huang, Weyl Anomaly Induced Stress Tensors in General Manifolds, Nucl. Phys.B 879 (2014) 370 [arXiv:1308.2355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [56]G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP02 (1999) 010 [hep-th/9901012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [57]C.P. Herzog and K.-W. Huang, Boundary Conformal Field Theory and a Boundary Central Charge, JHEP10 (2017) 189 [arXiv:1707.06224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [58]C.P. Herzog, K.-W. Huang, I. Shamir and J. Virrueta, Superconformal Models for Graphene and Boundary Central Charges, JHEP09 (2018) 161 [arXiv:1807.01700] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [59]O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, \( \mathcal{N}=6 \)superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].