Advertisement

PolyLogTools — polylogs for the masses

  • Claude Duhr
  • Falko DulatEmail author
Open Access
Regular Article - Theoretical Physics
  • 48 Downloads

Abstract

We review the Hopf algebra of the multiple polylogarithms and the symbol map, as well as the construction of single valued multiple polylogarithms and discuss an algorithm for finding fibration bases. We document how these algorithms are implemented in the Mathematica package PolyLogTools and show how it can be used to study the coproduct structure of polylogarithmic expressions and how to compute iterated parametric integrals over polylogarithmic expressions that show up in Feynman integal computations at low loop orders.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc.12 (1999) 569 [alg-geom/9601021] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  3. [3]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059.
  4. [4]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J.128 (2005) 209 [math.AG/0208144] [INSPIRE].
  5. [5]
    F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
  6. [6]
    F.C. Brown, Multiple zeta values and periods of moduli spaces M0,n, Annales Sci. École Norm. Sup.42 (2009) 371 [math.AG/0606419].
  7. [7]
    F. Brown, On the decomposition of motivic multiple zeta values, in Galois-Teichmüller theory and arithmetic geometry, Adv. Studies Pure Math.68, Math. Soc., Japan, (2012), pg. 31 [arXiv:1102.1310] [INSPIRE].
  8. [8]
    F. Brown, Single-valued motivic periods and multiple zeta values, SIGMA2 (2014) e25 [arXiv:1309.5309] [INSPIRE].
  9. [9]
    H. Gangl, Multiple polylogarithms in weight 4, arXiv:1609.05557.
  10. [10]
    H. Gangl, The Grassmannian complex and Goncharovs motivic complex in weight 4, arXiv:1801.07816.
  11. [11]
    S. Charlton, A review of Dan’s reduction method for multiple polylogarithms, arXiv:1703.03961.
  12. [12]
    S. Charlton, Identities arising from coproducts on multiple zeta values and multiple polylogarithms, Ph.D. thesis, University of Durham, Durham, U.K. (2016).Google Scholar
  13. [13]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys.B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys.A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys.61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 8 supergravity, JHEP03 (2019) 123 [arXiv:1901.08563] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop five-particle amplitude in N = 8 supergravity, JHEP03 (2019) 115 [arXiv:1901.05932] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
  20. [20]
    M. Spradlin and A. Volovich, Symbols of one-loop integrals from mixed Tate motives, JHEP11 (2011) 084 [arXiv:1105.2024] [INSPIRE].zbMATHGoogle Scholar
  21. [21]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
  23. [23]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
  24. [24]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann cluster bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].
  25. [25]
    L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the planar N = 4 SYM six-point amplitude, JHEP02(2017) 112 [arXiv:1611.08325] [INSPIRE].
  26. [26]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett.122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].
  28. [28]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
  29. [29]
    F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP11 (2012) 114 [arXiv:1209.2722] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N 3LO, JHEP07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3LO, JHEP12 (2013) 088 [arXiv:1311.1425] [INSPIRE].ADSGoogle Scholar
  32. [32]
    F. Dulat and B. Mistlberger, Real-virtual-virtual contributions to the inclusive Higgs cross section at N 3LO, arXiv:1411.3586 [INSPIRE].
  33. [33]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3LO QCD, Phys. Lett.B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].
  34. [34]
    C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3LO QCD, JHEP03 (2015) 091 [arXiv:1411.3584] [INSPIRE].
  35. [35]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett.114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSGoogle Scholar
  36. [36]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3LO in QCD, JHEP05 (2018) 028 [arXiv:1802.00833] [INSPIRE].ADSGoogle Scholar
  37. [37]
    F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia, Higgs-differential cross section at NNLO in dimensional regularisation, JHEP07 (2017) 017 [arXiv:1704.08220] [INSPIRE].ADSGoogle Scholar
  38. [38]
    F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N 3LO beyond threshold, JHEP01 (2018) 145 [arXiv:1710.03016] [INSPIRE].
  39. [39]
    F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N 3LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev.D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master integrals for three-jet production at next-to-next-to-leading order, Phys. Rev. Lett.123 (2019) 041603 [arXiv:1812.11160] [INSPIRE].ADSGoogle Scholar
  41. [41]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett.122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].
  42. [42]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  43. [43]
    J. Ablinger, J. Blümlein, C. Raab, C. Schneider and F. Wißbrock, Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms, Nucl. Phys.B 885 (2014) 409 [arXiv:1403.1137] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Inst. Math., Humboldt U., Berlin, Germany (2015) [arXiv:1506.07243] [INSPIRE].
  45. [45]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.188 (2015) 148 [arXiv:1403.3385] [INSPIRE].ADSzbMATHGoogle Scholar
  46. [46]
    C. Bogner, MPLa program for computations with iterated integrals on moduli spaces of curves of genus zero, Comput. Phys. Commun.203 (2016) 339 [arXiv:1510.04562] [INSPIRE].ADSzbMATHGoogle Scholar
  47. [47]
    J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett.120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Rationalizing loop integration, JHEP08 (2018) 184 [arXiv:1805.10281] [INSPIRE].
  49. [49]
    J.L. Bourjaily, A.J. McLeod, M. von Hippel and M. Wilhelm, Bounded collection of Feynman integral Calabi-Yau geometries, Phys. Rev. Lett.122 (2019) 031601 [arXiv:1810.07689] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.L. Bourjaily, F. Dulat and E. Panzer, Manifestly dual-conformal loop integration, Nucl. Phys.B 942 (2019) 251 [arXiv:1901.02887] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
  52. [52]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Drummond, J. Foster, Ö. Gürdoğn and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    F.C.S. Brown, Polylogarithmes multiples uniformes en une variable (in French), Compt. Rend. Math.338 (2004) 527 [INSPIRE].zbMATHGoogle Scholar
  55. [55]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP08 (2016) 152 [arXiv:1606.08807] [INSPIRE].
  56. [56]
    V. Del Duca, C. Duhr, R. Marzucca and B. Verbeek, The analytic structure and the transcendental weight of the BFKL ladder at NLL accuracy, JHEP10 (2017) 001 [arXiv:1705.10163] [INSPIRE].
  57. [57]
    V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE].
  58. [58]
    R. Marzucca and B. Verbeek, The multi-Regge limit of the eight-particle amplitude beyond leading logarithmic accuracy, JHEP07 (2019) 039 [arXiv:1811.10570] [INSPIRE].
  59. [59]
    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  60. [60]
    F. Brown, Feynman amplitudes, coaction principle and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  61. [61]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Cuts from residues: the one-loop case, JHEP06 (2017) 114 [arXiv:1702.03163] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic structure of cut Feynman integrals and the diagrammatic coaction, Phys. Rev. Lett.119 (2017) 051601 [arXiv:1703.05064] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case, JHEP12 (2017) 090 [arXiv:1704.07931] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  65. [65]
    D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun.183 (2012) 846 [hep-ph/0703052] [INSPIRE].
  66. [66]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput.33 (2000) 1 [cs/0004015] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  67. [67]
  68. [68]
  69. [69]
    N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen (in German), Nova Acta Leopoldina (Halle)90 (1909).Google Scholar
  70. [70]
    D.E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Alg.58 (1979) 432.MathSciNetzbMATHGoogle Scholar
  71. [71]
    W.A. Stein et al., Sage mathematics software (version 8.6), The Sage Development Team, (2019).Google Scholar
  72. [72]
    M.E. Hoffman, Quasi-shuffle products, J. Algebraic Combin.11 (2000) 49 [math.QA/9907173].
  73. [73]
    K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Math.142 (2006) 307.MathSciNetzbMATHGoogle Scholar
  74. [74]
    C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics. Journeys through the precision frontier: amplitudes for colliders (TASI 2014) Boulder, CO, U.S.A., 2–27 June 2014, World Scientific, Singapore (2015), pg. 419 [arXiv:1411.7538] [INSPIRE].
  75. [75]
    S. Charlton, C. Duhr, F. Dulat and H. Gangl, Clean functional relations for multiple polylogarithms, to appear.Google Scholar
  76. [76]
    J. Golden and A.J. Mcleod, Cluster algebras and the subalgebra constructibility of the seven-particle remainder function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc.83 (1977) 831 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  78. [78]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  79. [79]
    R. Ree, Lie elements and an algebra associated with shuffles, Annals Math.68 (1958) 210.MathSciNetzbMATHGoogle Scholar
  80. [80]
    G. Griffing, Dual Lie elements and a derivation for the Cofree coassociative coalgebra, Proc. Amer. Math. Soc.123 (1995) 3269.MathSciNetzbMATHGoogle Scholar
  81. [81]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun.167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  82. [82]
    S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys.43 (2002) 3363 [hep-ph/0110083] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  83. [83]
    J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.A 14 (1999) 2037 [hep-ph/9806280] 0[INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    F. Brown, Notes on motivic periods, Commun. Num. Theor. Phys.11 (2017) 557 [arXiv:1512.06410].MathSciNetzbMATHGoogle Scholar
  85. [85]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
  86. [86]
    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun.144 (2002) 200 [hep-ph/0111255] [INSPIRE].
  87. [87]
    T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE].
  88. [88]
    M. Yu. Kalmykov and A. Sheplyakov, lsjka C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions, Comput. Phys. Commun.172 (2005) 45 [hep-ph/0411100] [INSPIRE].
  89. [89]
    S. Buehler and C. Duhr, CHAPLIN — complex harmonic polylogarithms in fortran, Comput. Phys. Commun.185 (2014) 2703 [arXiv:1106.5739] [INSPIRE].ADSzbMATHGoogle Scholar
  90. [90]
    H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Li nand Li 2,2and on the evaluation thereof, JHEP03 (2016) 189 [arXiv:1601.02649] [INSPIRE].ADSzbMATHGoogle Scholar
  91. [91]
    H. Frellesvig, Generalized polylogarithms in Maple, arXiv:1806.02883 [INSPIRE].
  92. [92]
    J. Ablinger, J. Blümlein, M. Round and C. Schneider, Numerical implementation of harmonic polylogarithms to weight w = 8, Comput. Phys. Commun.240 (2019) 189 [arXiv:1809.07084] [INSPIRE].ADSGoogle Scholar
  93. [93]
    H.R.P. Ferguson and D.H. Bailey, A polynomial time, numerically stable integer relation algorithm, RNR technical report RNR-91-032, (1992).Google Scholar
  94. [94]
    P. Bertok, Pslq integer relation algorithm implementation, http://library.wolfram.com/infocenter/MathSource/4263/, (2004).
  95. [95]
    F. Brown, The massless higher-loop two-point function, Commun. Math. Phys.287 (2009) 925 [arXiv:0804.1660] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  96. [96]
    C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of genus zero, Commun. Num. Theor. Phys.09 (2015) 189 [arXiv:1408.1862] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  97. [97]
    F.C.S. Brown, Polylogarithmes multiples uniformes en une variable, Compt. Rend. Math.338 (2004) 527 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  98. [98]
    F.C.S. Brown, Single-valued hyperlogarithms and unipotent differential equations, IHES notes, (2004).Google Scholar
  99. [99]
    J.M. Drummond, Generalised ladders and single-valued polylogarithms, JHEP02 (2013) 092 [arXiv:1207.3824] [INSPIRE].ADSzbMATHGoogle Scholar
  100. [100]
    J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading singularities and off-shell conformal integrals, JHEP08 (2013) 133 [arXiv:1303.6909] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  101. [101]
    O. Schnetz, Hyperlog procedures, https://www.math.fau.de/person/oliver-schnetz/, (2018).
  102. [102]
    O. Schnetz, Numbers and functions in quantum field theory, Phys. Rev.D 97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].ADSMathSciNetGoogle Scholar
  103. [103]
    L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the multi-Regge limit, JHEP10 (2012) 074 [arXiv:1207.0186] [INSPIRE].ADSGoogle Scholar
  104. [104]
    V. Del Duca, L.J. Dixon, C. Duhr and J. Pennington, The BFKL equation, Mueller-Navelet jets and single-valued harmonic polylogarithms, JHEP02 (2014) 086 [arXiv:1309.6647] [INSPIRE].
  105. [105]
    Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].ADSGoogle Scholar
  106. [106]
    Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP09 (2017) 073 [arXiv:1706.10162] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  107. [107]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSzbMATHGoogle Scholar
  108. [108]
    C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion of double-real-virtual corrections to Higgs production at N 3LO, JHEP08 (2015) 051 [arXiv:1505.04110] [INSPIRE].ADSGoogle Scholar
  109. [109]
    C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3LO, JHEP02 (2015) 077 [arXiv:1411.3587] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N 3LO, JHEP10 (2013) 096 [arXiv:1306.2223] [INSPIRE].ADSGoogle Scholar
  111. [111]
    N. Deutschmann, C. Duhr, F. Maltoni and E. Vryonidou, Gluon-fusion Higgs production in the Standard Model effective field theory, JHEP12 (2017) 063 [Erratum ibid.02 (2018) 159] [arXiv:1708.00460] [INSPIRE].ADSGoogle Scholar
  112. [112]
    N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to bbH production at the LHC, JHEP07 (2019) 054 [arXiv:1808.01660] [INSPIRE].ADSGoogle Scholar
  113. [113]
    V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP04 (2015) 036 [arXiv:1501.07226] [INSPIRE].
  114. [114]
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-jet production in electron-positron collisions at next-to-next-to-leading order accuracy, Phys. Rev. Lett.117 (2016) 152004 [arXiv:1603.08927] [INSPIRE].
  115. [115]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev.D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].
  116. [116]
    P. Boyle, L. Del Debbio and A. Khamseh, Massive momentum-subtraction scheme, Phys. Rev.D 95 (2017) 054505 [arXiv:1611.06908] [INSPIRE].
  117. [117]
    S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett.119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].ADSGoogle Scholar
  118. [118]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev.D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].ADSGoogle Scholar
  119. [119]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar two-loop five-parton amplitudes from numerical unitarity, JHEP11 (2018) 116 [arXiv:1809.09067] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  120. [120]
    S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett.122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].ADSzbMATHGoogle Scholar
  121. [121]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F 3) supersymmetric form factors and maximal transcendentality. Part I. N = 4 super Yang-Mills, JHEP12 (2018) 076 [arXiv:1804.05703] [INSPIRE].
  122. [122]
    A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F 3) supersymmetric form factors and maximal transcendentality. Part II. 0 < N < 4 super Yang-Mills, JHEP12 (2018) 077 [arXiv:1804.05828] [INSPIRE].
  123. [123]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP10 (2014) 125 [arXiv:1401.3546] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  124. [124]
    S. Abreu, R. Britto and H. Grönqvist, Cuts and coproducts of massive triangle diagrams, JHEP07 (2015) 111 [arXiv:1504.00206] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  125. [125]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev.D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].ADSMathSciNetGoogle Scholar
  126. [126]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, JHEP08 (2018) 014 [arXiv:1803.10256] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  127. [127]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, JHEP01 (2019) 023 [arXiv:1809.10698] [INSPIRE].
  128. [128]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic polylogarithms and Feynman parameter integrals, JHEP05 (2019) 120 [arXiv:1902.09971] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  129. [129]
    V. Del Duca, C. Duhr and V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, JHEP03 (2010) 099 [arXiv:0911.5332] [INSPIRE].
  130. [130]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, JHEP05 (2010) 084 [arXiv:1003.1702] [INSPIRE].
  131. [131]
    F. Brown, unpublished.Google Scholar
  132. [132]
    L. Lewin, Polylogarithms and associated functions, North Holland, New York, NY, U.S.A. (1982).Google Scholar
  133. [133]
    R. Kellerhals, Volumes in hyperbolic 5-space, GAFA5 (1995) 640.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.TH DepartmentCERNGeneva 23Switzerland
  2. 2.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  3. 3.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.

Personalised recommendations