Unified formalism for 6D superamplitudes based on a symplectic Grassmannian

  • John H. Schwarz
  • Congkao WenEmail author
Open Access
Regular Article - Theoretical Physics


Recently, twistor-like formulations of tree amplitudes involving n massless particles have been proposed for various 6D supersymmetric theories. The formulas are based on two different forms of the scattering equations: one based on rational maps and the other based on polarized scattering equations. We show that both formulations can be interpreted in terms of a symplectic (or complex Lagrangian) Grassmannian, \( \mathbbm{LG} \)(n, 2n), and that they correspond to different ways of fixing the GL(n, ℂ) symmetry of \( \mathbbm{LG} \)(n, 2n). This provides an understanding of the equivalence of these different-looking formulas, and it leads to new twistor-like formulas for 6D superamplitudes.


Field Theories in Higher Dimensions Scattering Amplitudes Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Heydeman, J.H. Schwarz and C. Wen, M5-Brane and D-brane Scattering Amplitudes, JHEP12 (2017) 003 [arXiv:1710.02170] [INSPIRE].
  2. [2]
    F. Cachazo, A. Guevara, M. Heydeman, S. Mizera, J.H. Schwarz and C. Wen, The S Matrix of 6D Super Yang-Mills and Maximal Supergravity from Rational Maps, JHEP09 (2018) 125 [arXiv:1805.11111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Heydeman, J.H. Schwarz, C. Wen and S.-Q. Zhang, All Tree Amplitudes of 6D (2, 0) Supergravity: Interacting Tensor Multiplets and the K3 Moduli Space, Phys. Rev. Lett.122 (2019) 111604 [arXiv:1812.06111] [INSPIRE].
  4. [4]
    F. Cachazo and Y. Geyer, A ‘Twistor String’ Inspired Formula For Tree-Level Scattering Amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  5. [5]
    F. Cachazo and D. Skinner, Gravity from Rational Curves in Twistor Space, Phys. Rev. Lett.110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].
  6. [6]
    F. Cachazo, L. Mason and D. Skinner, Gravity in Twistor Space and its Grassmannian Formulation, SIGMA10 (2014) 051 [arXiv:1207.4712] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in Three Dimensions from Rational Maps, JHEP10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev.D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].
  10. [10]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].
  11. [11]
    Y. Geyer and L. Mason, Polarized Scattering Equations for 6D Superamplitudes, Phys. Rev. Lett.122 (2019) 101601 [arXiv:1812.05548] [INSPIRE].
  12. [12]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett.113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].
  13. [13]
    Y. Geyer and L. Mason, The M-theory S-matrix, arXiv:1901.00134 [INSPIRE].
  14. [14]
    C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions, JHEP07 (2009) 075 [arXiv:0902.0981] [INSPIRE].
  15. [15]
    F. Cachazo, Resultants and Gravity Amplitudes, arXiv:1301.3970 [INSPIRE].
  16. [16]
    A. Boralevi and J. Buczynski, Secants of lagrangian grassmannians, Ann. Mat. Pura Appl.4 (2011) 725 [arXiv:1006.1925].
  17. [17]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE].
  18. [18]
    S. He, Z. Liu and J.-B. Wu, Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions, JHEP07 (2016) 060 [arXiv:1604.02834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K.A. Roehrig, Chiral splitting and \( \mathcal{N}=4 \)Einstein-Yang-Mills tree amplitudes in 4d, JHEPs (2017) 033 [arXiv:1705.09315] [INSPIRE].
  20. [20]
    A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE].
  21. [21]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  23. [23]
    H. Johansson, G. Kälin and G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes, JHEP09 (2017) 019 [arXiv:1706.09381] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [arXiv:1212.5605] [INSPIRE].
  25. [25]
    S. Lee, Yangian Invariant Scattering Amplitudes in Supersymmetric Chern-Simons Theory, Phys. Rev. Lett.105 (2010) 151603 [arXiv:1007.4772] [INSPIRE].
  26. [26]
    Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal grassmannian, JHEP02 (2014) 104 [arXiv:1309.3252] [INSPIRE].
  27. [27]
    Y.-t. Huang, C. Wen and D. Xie, The Positive orthogonal Grassmannian and loop amplitudes of ABJM, J. Phys. A47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, JHEP04 (2010) 127 [arXiv:0910.2688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Karpman and Y. Su, Combinatorics of symmetric plabic graphs, arXiv:1510.02122 [INSPIRE].
  32. [32]
    R. Karpman, Total positivity for the Lagrangian Grassmannian, arXiv:1510.04386.
  33. [33]
    S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, arXiv:1906.02099 [INSPIRE].
  34. [34]
    L. Rastelli, K. Roumpedakis and X. Zhou, AdS 3 × S 3Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry, arXiv:1905.11983 [INSPIRE].
  35. [35]
    S. Giusto, R. Russo, A. Tyukov and C. Wen, Holographic correlators in AdS 3without Witten diagrams, arXiv:1905.12314 [INSPIRE].
  36. [36]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5× S 5, Phys. Rev. Lett.118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  37. [37]
    S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdS 5× S 5supergravity: hidden ten-dimensional conformal symmetry, JHEP01 (2019) 196 [arXiv:1809.09173] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical Physics, California Institute of TechnologyPasadenaU.S.A.
  2. 2.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations