Advertisement

On N-spike strings in conformal gauge with NS-NS fluxes

  • Aritra BanerjeeEmail author
  • Sagar Biswas
  • Priyadarshini Pandit
  • Kamal L. Panigrahi
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

The AdS3 × S3 string sigma model supported both by NS-NS and R-R fluxes has become a well known integrable model, however a putative dual field theory description remains incomplete. We study the anomalous dimensions of twist operators in this theory via semiclassical string methods. We describe the construction of a multi-cusp closed string in conformal gauge moving in AdS3 with fluxes, which supposedly is dual to a general higher twist operator. After analyzing the string profiles and conserved charges for the string, we find the exact dispersion relation between the charges in the ‘long’ string limit. This dispersion relation in leading order turns out to be similar to the case of pure RR flux, with the coupling being scaled by a factor that depends on the amount of NS-NS flux turned on. We also analyse the case of pure NS flux, where the dispersion relation simplifies considerably. Furthermore, we discuss the implications of these results at length.

Keywords

AdS-CFT Correspondence Bosonic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semiclassical limit of the gauge/string correspondence, Nucl. Phys.B 636 (2002) 99 [hep-th/0204051] [INSPIRE].
  3. [3]
    M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP08 (2005) 014 [hep-th/0410226] [INSPIRE].
  4. [4]
    M. Kruczenski and A.A. Tseytlin, Spiky strings, light-like Wilson loops and pp-wave anomaly, Phys. Rev.D 77 (2008) 126005 [arXiv:0802.2039] [INSPIRE].
  5. [5]
    R. Ishizeki, M. Kruczenski, A. Tirziu and A.A. Tseytlin, Spiky strings in AdS 3 × S 1and their AdS-pp-wave limits, Phys. Rev.D 79 (2009) 026006 [arXiv:0812.2431] [INSPIRE].
  6. [6]
    A. Jevicki and K. Jin, Solitons and AdS string solutions, Int. J. Mod. Phys.A 23 (2008) 2289 [arXiv:0804.0412] [INSPIRE].
  7. [7]
    A. Jevicki and K. Jin, Moduli dynamics of AdS 3strings, JHEP06 (2009) 064 [arXiv:0903.3389] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Freyhult, M. Kruczenski and A. Tirziu, Spiky strings in the SL(2) Bethe ansatz, JHEP07 (2009) 038 [arXiv:0905.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Kruczenski and A. Tirziu, Spiky strings in Bethe Ansatz at strong coupling, Phys. Rev.D 81 (2010) 106004 [arXiv:1002.4843] [INSPIRE].
  10. [10]
    M. Losi, Spiky strings and the AdS/CFT correspondence, arXiv:1109.5401 [INSPIRE].
  11. [11]
    A. Banerjee, S. Bhattacharya and K.L. Panigrahi, Spiky strings in κ-deformed AdS, JHEP06 (2015) 057 [arXiv:1503.07447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Sfondrini, Towards integrability for AdS3/CFT2, J. Phys.A 48 (2015) 023001 [arXiv:1406.2971] [INSPIRE].
  14. [14]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP07 (2008) 033 [arXiv:0804.3267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.R. David and B. Sahoo, S-matrix for magnons in the D1-D5 system, JHEP10 (2010) 112 [arXiv:1005.0501] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS 3/CFT 2integrable systems, JHEP03 (2013) 109 [arXiv:1211.1952] [INSPIRE].ADSzbMATHGoogle Scholar
  17. [17]
    C. Ahn and D. Bombardelli, Exact S-matrices for AdS 3/CFT 2, Int. J. Mod. Phys.A 28 (2013) 1350168 [arXiv:1211.4512] [INSPIRE].
  18. [18]
    P. Sundin and L. Wulff, Worldsheet scattering in AdS 3/CFT 2, JHEP07 (2013) 007 [arXiv:1302.5349] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Borsato et al., The all-loop integrable spin-chain for strings on AdS 3 × S 3 × T 4: the massive sector, JHEP08 (2013) 043 [arXiv:1303.5995] [INSPIRE].
  20. [20]
    R. Borsato et al., Dressing phases of AdS 3/CFT 2, Phys. Rev.D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].
  21. [21]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., Towards the all-loop worldsheet S matrix for AdS 3 × S 3 × T 4, Phys. Rev. Lett.113 (2014) 131601 [arXiv:1403.4543] [INSPIRE].
  22. [22]
    L. Bianchi and B. Hoare, AdS 3 × S 3 × M 4string S-matrices from unitarity cuts, JHEP08 (2014) 097 [arXiv:1405.7947] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The complete AdS 3 × S 3 × T 4worldsheet S matrix, JHEP10 (2014) 066 [arXiv:1406.0453] [INSPIRE].
  24. [24]
    A. Pittelli, A. Torrielli and M. Wolf, Secret symmetries of type IIB superstring theory on AdS 3 × S 3 × M 4, J. Phys.A 47 (2014) 455402 [arXiv:1406.2840] [INSPIRE].
  25. [25]
    T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4with mixed three-form flux, Nucl. Phys.B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].
  26. [26]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, On the spectrum of AdS 3 × S 3 × T 4strings with Ramond-Ramond flux, J. Phys.A 49 (2016) 41LT03 [arXiv:1605.00518] [INSPIRE].
  27. [27]
    P. Sundin and L. Wulff, The complete one-loop BMN S-matrix in AdS 3 × S 3 × T 4, JHEP06 (2016) 062 [INSPIRE].
  28. [28]
    R. Borsato et al., On the dressing factors, Bethe equations and Yangian symmetry of strings on AdS 3 × S 3 × T 4, J. Phys.A 50 (2017) 024004 [arXiv:1607.00914] [INSPIRE].
  29. [29]
    M. Baggio et al., Protected string spectrum in AdS 3/CFT 2from worldsheet integrability, JHEP04 (2017) 091 [arXiv:1701.03501] [INSPIRE].
  30. [30]
    O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS3/CFT2 correspondence, JHEP08 (2011) 029 [arXiv:1106.2558] [INSPIRE].zbMATHGoogle Scholar
  31. [31]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1superstring, JHEP07 (2012) 159 [arXiv:1204.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic SU(1|1)2S-matrix for AdS 3/CFT 2, JHEP04 (2013) 113 [arXiv:1211.5119] [INSPIRE].
  33. [33]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS 3/CFT 2, JHEP04 (2013) 116 [arXiv:1212.0505] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, The AdS 3 × S 3 × S 3 × S 1worldsheet S matrix, J. Phys.A 48 (2015) 415401 [arXiv:1506.00218] [INSPIRE].
  35. [35]
    M.C. Abbott, Comment on Strings in AdS 3 × S 3 × S 3 × S 1at one Loop, JHEP02 (2013) 102 [arXiv:1211.5587] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.C. Abbott, The AdS 3 × S 3 × S 3 × S 1Hernández-López phases: a semiclassical derivation, J. Phys.A 46 (2013) 445401 [arXiv:1306.5106] [INSPIRE].
  37. [37]
    M.C. Abbott and I. Aniceto, Macroscopic (and microscopic) massless modes, Nucl. Phys.B 894 (2015) 75 [arXiv:1412.6380] [INSPIRE].
  38. [38]
    L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS 3 × S 3 × S 3 × S 1, JHEP03 (2017) 124 [arXiv:1701.03552] [INSPIRE].
  39. [39]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The Search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys.9 (2005) 435 [hep-th/0403090] [INSPIRE].
  40. [40]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
  41. [41]
    L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS 3 × S 3 × S 3 × S 1, JHEP08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
  42. [42]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3, JHEP05 (2018) 085 [arXiv:1803.04423] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Pittelli, Yangian symmetry of string theory on AdS 3 × S 3 × S 3 × S 1with mixed 3-form Flux, Nucl. Phys.B 935 (2018) 271 [arXiv:1711.02468] [INSPIRE].
  44. [44]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3/CF T 2correspondence, JHEP03 (2010) 058 [arXiv:0912.1723] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1superstring, JHEP10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
  47. [47]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3/CF T 2correspondence and integrability, JHEP11 (2012) 133 [Erratum ibid.04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  48. [48]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3and SL(2, ℝ) WZW model 1.: the spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  49. [49]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4with mixed 3-form flux: tree-level S-matrix, Nucl. Phys.B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].
  50. [50]
    B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS 3 × S 3 × T 4superstring theory with mixed 3-form flux, Nucl. Phys.B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].
  51. [51]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3 × S 3 × T 4with mixed flux, Nucl. Phys.B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].
  52. [52]
    P. Sundin and L. Wulff, One- and two-loop checks for the AdS 3 × S 3 × T 4superstring with mixed flux, J. Phys.A 48 (2015) 105402 [arXiv:1411.4662] [INSPIRE].
  53. [53]
    M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev.D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].
  54. [54]
    O. Ohlsson Sax and B. Stefanski, Closed strings and moduli in AdS 3/CFT 2, JHEP05 (2018) 101 [arXiv:1804.02023] [INSPIRE].
  55. [55]
    A. Babichenko, A. Dekel and O. Ohlsson Sax, Finite-gap equations for strings on AdS 3x S 3x T 4with mixed 3-form flux, JHEP11 (2014) 122 [arXiv:1405.6087] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Lloyd and B. Stefanski, Jr., AdS 3/CFT 2, finite-gap equations and massless modes, JHEP04 (2014) 179 [arXiv:1312.3268] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.R. David and A. Sadhukhan, Spinning strings and minimal surfaces in AdS 3with mixed 3-form fluxes, JHEP10 (2014) 049 [arXiv:1405.2687] [INSPIRE].
  58. [58]
    A. Banerjee, K.L. Panigrahi and P.M. Pradhan, Spiky strings on AdS 3 × S 3with NS-NS flux, Phys. Rev.D 90 (2014) 106006 [arXiv:1405.5497] [INSPIRE].
  59. [59]
    C. Ahn and P. Bozhilov, String solutions in AdS 3 × S 3 × T 4with NS-NS B-field, Phys. Rev.D 90 (2014) 066010 [arXiv:1404.7644] [INSPIRE].
  60. [60]
    A. Banerjee, S. Biswas and K.L. Panigrahi, On multi-spin classical strings with NS-NS flux, JHEP08 (2018) 053 [arXiv:1806.10934] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    A. Banerjee, K.L. Panigrahi and M. Samal, A note on oscillating strings in AdS 3 × S 3with mixed three-form fluxes, JHEP11 (2015) 133 [arXiv:1508.03430] [INSPIRE].
  62. [62]
    S.P. Barik, K.L. Panigrahi and M. Samal, Perturbation of pulsating strings, Eur. Phys. J.C 78 (2018) 882 [arXiv:1708.05202] [INSPIRE].
  63. [63]
    A. Banerjee and A. Sadhukhan, Multi-spike strings in AdS 3with mixed three-form fluxes, JHEP05 (2016) 083 [arXiv:1512.01816] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Stepanchuk, Aspects of integrability in string sigma-models, Ph.D. thesis, Imperial College, London, U.K. (2015).
  65. [65]
    R. Hernández and J.M. Nieto, Spinning strings in AdS 3 × S 3with NS-NS flux, Nucl. Phys.B 888 (2014) 236 [Erratum ibid.B 895 (2015) 303] [arXiv:1407.7475] [INSPIRE].
  66. [66]
    R. Hernandez and J.M. Nieto, Elliptic solutions in the Neumann-Rosochatius system with mixed flux, Phys. Rev.D 91 (2015) 126006 [arXiv:1502.05203] [INSPIRE].
  67. [67]
    R. Hernández, J.M. Nieto and R. Ruiz, Pulsating strings with mixed three-form flux, JHEP04 (2018) 078 [arXiv:1803.03078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    J.M. Nieto and R. Ruiz, One-loop quantization of rigid spinning strings in AdS 3 × S 3 × T 4with mixed flux, JHEP07 (2018) 141 [arXiv:1804.10477] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Banerjee, S. Biswas and R.R. Nayak, D1 string dynamics in curved backgrounds with fluxes, JHEP04 (2016) 172 [arXiv:1601.06360] [INSPIRE].ADSGoogle Scholar
  70. [70]
    R. Hernández, J.M. Nieto and R. Ruiz, Minimal surfaces with mixed three-form flux, Phys. Rev.D 99 (2019) 086003 [arXiv:1811.08294] [INSPIRE].
  71. [71]
    A. Dei and A. Sfondrini, Integrable spin chain for stringy Wess-Zumino-Witten models, JHEP07 (2018) 109 [arXiv:1806.00422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Physics, Ramakrishna Mission VidyamandiraHowrahIndia
  3. 3.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations