The asymptotic growth of states of the 4d \( \mathcal{N}=1 \) superconformal index

  • Alejandro Cabo-Bizet
  • Davide CassaniEmail author
  • Dario Martelli
  • Sameer Murthy
Open Access
Regular Article - Theoretical Physics


We show that the superconformal index of \( \mathcal{N}=1 \) superconformal field theories in four dimensions has an asymptotic growth of states which is exponential in the charges. Our analysis holds in a Cardy-like limit of large charges, for which the index is dominated by small values of chemical potentials. In this limit we find the saddle points of the integral that defines the superconformal index using two different methods. One method, valid for finite N, is to first take the Cardy-like limit and then find the saddle points. The other method is to analyze the saddle points at large N and then take the Cardy-like limit. The result of both analyses is that the asymptotic growth of states of the superconformal index exactly agrees with the Bekenstein-Hawking entropy of supersymmetric black holes in the dual AdS5 theory.


AdS-CFT Correspondence Black Holes in String Theory Supersymmetric Gauge Theory Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS 5black holes, arXiv:1810.11442 [INSPIRE].
  2. [2]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
  3. [3]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Comments on deconfinement in AdS/CFT, arXiv:1811.08646 [INSPIRE].
  4. [4]
    F. Benini and P. Milan, Black holes in 4d \( \mathcal{N}=4 \)Super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  5. [5]
    M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, Phys. Rev.D 100 (2019) 026008 [arXiv:1901.08091] [INSPIRE].
  6. [6]
    A. Arabi Ardehali, Cardy-like asymptotics of the 4d \( \mathcal{N}=4 \)index and AdS 5blackholes, JHEP06 (2019) 134 [arXiv:1902.06619] [INSPIRE].
  7. [7]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4from supersymmetric localization, JHEP05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5black holes, JHEP02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5black holes, JHEP04 (2004) 048 [hep-th/0401129] [INSPIRE].
  12. [12]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett.95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev.D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].
  14. [14]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5black holes, JHEP04 (2006) 036 [hep-th/0601156] [INSPIRE].
  15. [15]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP08 (2014) 123 [arXiv:1405.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP07 (2015) 043 [arXiv:1503.05537] [INSPIRE].
  18. [18]
    C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys.B 747 (2006) 329 [hep-th/0510060] [INSPIRE].
  19. [19]
    A. Sen, Entropy Function and AdS 2/CF T 1Correspondence, JHEP11 (2008) 075 [arXiv:0805.0095] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP09 (2009) 022 [arXiv:0904.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP12 (2014) 031 [arXiv:1407.6061] [INSPIRE].
  22. [22]
    A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition functions, JHEP07 (2016) 025 [arXiv:1512.03376] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Shaghoulian, Modular Invariance of Conformal Field Theory on S 1 × S 3and Circle Fibrations, Phys. Rev. Lett.119 (2017) 131601 [arXiv:1612.05257] [INSPIRE].
  25. [25]
    S. Kim and K.-M. Lee, 1/16-BPS Black Holes and Giant Gravitons in the AdS 5× S 5Space, JHEP12 (2006) 077 [hep-th/0607085] [INSPIRE].
  26. [26]
    J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy Formula, arXiv:1904.03455 [INSPIRE].
  27. [27]
    L. Di Pietro and M. Honda, Cardy Formula for 4d SUSY Theories and Localization, JHEP04 (2017) 055 [arXiv:1611.00380] [INSPIRE].
  28. [28]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, High-Temperature Expansion of Supersymmetric Partition Functions, JHEP07 (2015) 113 [arXiv:1502.07737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Hwang, S. Lee and P. Yi, Holonomy Saddles and Supersymmetry, Phys. Rev.D 97 (2018) 125013 [arXiv:1801.05460] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    A. Parkes and P.C. West, Finiteness in Rigid Supersymmetric Theories, Phys. Lett.138B (1984) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.J. Parkes and P.C. West, Three Loop Results in Two Loop Finite Supersymmetric Gauge Theories, Nucl. Phys. B256 (1985) 340 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.C. West, The Yukawa β-function in N = 1 Rigid Supersymmetric Theories, Phys. Lett.137B (1984) 371 [INSPIRE].
  34. [34]
    G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z) × Z 3, math/9907061.
  35. [35]
    V.P. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics, Contemp. Math.563 (2012) 181 [arXiv:1011.3798] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals andt Hooft anomaly matching conditions, JHEP06 (2012) 016 [arXiv:1203.5677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E.M. Rains, Limits of elliptic hypergeometric integrals, Ramanujan J.18 (2007) 257 [math/0607093].
  38. [38]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE].
  39. [39]
    K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys.B 667 (2003) 183 [hep-th/0304128] [INSPIRE].
  40. [40]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [INSPIRE].
  41. [41]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP06 (2005) 064 [hep-th/0411264] [INSPIRE].
  42. [42]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP01 (2006) 128 [hep-th/0505211] [INSPIRE].
  43. [43]
    A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for L p,q,rmanifolds, JHEP09 (2005) 018 [hep-th/0505220] [INSPIRE].
  44. [44]
    S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r , JHEP04 (2006) 033 [hep-th/0505206] [INSPIRE].
  45. [45]
    A. Narukawa, The modular properties and the integral representations of the multiple elliptic gamma functions, math/0306164.
  46. [46]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys.8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    F.A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys.B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.INFN, Sezione di PadovaPadovaItaly

Personalised recommendations