A Strong Scalar Weak Gravity Conjecture and some implications

  • Eduardo GonzaloEmail author
  • Luis E. Ibáñez
Open Access
Regular Article - Theoretical Physics


We propose a new version of the scalar Weak Gravity Conjecture (WGC) which would apply to any scalar field coupled to quantum gravity. For a single scalar it is given by the differential constraint (V″)2 ≤ (2V2VV′′′′)\( {M}_{\mathrm{p}}^2 \), where V is the scalar potential. It corresponds to the statement that self-interactions of a scalar must be stronger than gravity for any value of the scalar field. We find that the solutions which saturate the bound correspond to towers of extremal states with mass \( {m}^2\left(\phi \right)={m}_0^2/\left({\left(R/m\right)}^2+1/{(nR)}^2\right) \), with R2 = eϕ, consistent with the emergence of an extra dimension at large or small R and the existence of extended objects (strings). These states act as WGC states for the scalar ϕ. It is also consistent with the distance swampland conjecture with a built-in duality symmetry. All of this is remarkable since neither extra dimensions nor string theory are put in the theory from the beginning, but they emerge. This is quite analogous to how the 11-th dimension appears in M-theory from towers of Type IIA solitonic D0-branes. From this constraint one can derive several swampland conjectures from a single principle. In particular one finds that an axion potential is only consistent if fMp, recovering a result already conjectured from other arguments. The conjecture has far reaching consequences and applies to several interesting physical systems: i) Among chaotic inflation potentials only those asymptotically linear may survive. ii) If applied to the radion of the circle compactification of the Standard Model to 3D with Dirac neutrinos, the constraint implies that the 4D cosmological constant scale must be larger than the mass of the lightest neutrino, which must be in normal hierarchy. It also puts a constraint on the EW scale, potentially explaining the hierarchy problem. This recovers and improves results already obtained by applying the AdS swampland conjecture, but in a way which is independent from UV physics. iii) It also constraints simplest moduli fixing string models. The simplest KKLT model is compatible with the constraints but the latter may be relevant for some choices of parameters.


Superstring Vacua Superstrings and Heterotic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Rudelius, Constraints on Axion Inflation from the Weak Gravity Conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
  6. [6]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP08 (2015) 032 [arXiv:1503.03886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the Swampland: Quantum Gravity Constraints on Large Field Inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE].
  8. [8]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On Axionic Field Ranges, Loopholes and the Weak Gravity Conjecture, JHEP04 (2016) 017 [arXiv:1504.00659] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    B. Heidenreich, M. Reece and T. Rudelius, Weak Gravity Strongly Constrains Large-Field Axion Inflation, JHEP12 (2015) 108 [arXiv:1506.03447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural Inflation and Quantum Gravity, Phys. Rev. Lett.114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].
  11. [11]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the Swamp: Evading the Weak Gravity Conjecture with F-term Winding Inflation?, Phys. Lett.B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].ADSzbMATHGoogle Scholar
  12. [12]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian Axions and the Weak Gravity Conjecture, JHEP01 (2016) 091 [arXiv:1503.07853] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    T. Rudelius, On the Possibility of Large Axion Moduli Spaces, JCAP04 (2015) 049 [arXiv:1409.5793] [INSPIRE].
  14. [14]
    D. Junghans, Large-Field Inflation with Multiple Axions and the Weak Gravity Conjecture, JHEP02 (2016) 128 [arXiv:1504.03566] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    K. Kooner, S. Parameswaran and I. Zavala, Warping the Weak Gravity Conjecture, Phys. Lett.B 759 (2016) 402 [arXiv:1509.07049] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    D. Harlow, Wormholes, Emergent Gauge Fields and the Weak Gravity Conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE].
  17. [17]
    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion Monodromy and the Weak Gravity Conjecture, JHEP04 (2016) 020 [arXiv:1512.00025] [INSPIRE].
  18. [18]
    A. Hebecker, F. Rompineve and A. Westphal, Axion Monodromy and the Weak Gravity Conjecture, JHEP04 (2016) 157 [arXiv:1512.03768] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    M. Montero, G. Shiu and P. Soler, The Weak Gravity Conjecture in three dimensions, JHEP10 (2016) 159 [arXiv:1606.08438] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev.D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Klaewer and E. Palti, Super-Planckian Spatial Field Variations and Quantum Gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway Relaxion Monodromy, JHEP02 (2018) 124 [arXiv:1610.05320] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    A. Herráez and L.E. Ibáñez, An Axion-induced SM/MSSM Higgs Landscape and the Weak Gravity Conjecture, JHEP02 (2017) 109 [arXiv:1610.08836] [INSPIRE].ADSzbMATHGoogle Scholar
  25. [25]
    M. Montero, Are tiny gauge couplings out of the Swampland?, JHEP10 (2017) 208 [arXiv:1708.02249] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    L.E. Ibáñez and M. Montero, A Note on the WGC, Effective Field Theory and Clockwork within String Theory, JHEP02 (2018) 057 [arXiv:1709.02392] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    G. Aldazabal and L.E. Ibáñez, A Note on 4D Heterotic String Vacua, FI-terms and the Swampland, Phys. Lett.B 782 (2018) 375 [arXiv:1804.07322] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    C. Cheung, J. Liu and G.N. Remmen, Proof of the Weak Gravity Conjecture from Black Hole Entropy, JHEP10 (2018) 004 [arXiv:1801.08546] [INSPIRE].
  29. [29]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
  31. [31]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A Tower Weak Gravity Conjecture from Infrared Consistency, Fortsch. Phys. 66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces, JHEP06 (2018) 052 [arXiv:1803.04989] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    A. Landete and G. Shiu, Mass Hierarchies and Dynamical Field Range, Phys. Rev.D 98 (2018) 066012 [arXiv:1806.01874] [INSPIRE].
  34. [34]
    Y. Hamada, T. Noumi and G. Shiu, Weak Gravity Conjecture from Unitarity and Causality, Phys. Rev. Lett.123 (2019) 051601 [arXiv:1810.03637] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    S.-J. Lee, W. Lerche and T. Weigand, Modular Fluxes, Elliptic Genera and Weak Gravity Conjectures in Four Dimensions, arXiv:1901.08065 [INSPIRE].
  37. [37]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017) 015 (2017) [arXiv:1711.00864] [INSPIRE].
  38. [38]
    E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B938 (2019) 321 [arXiv:1810.05169] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    D. Lüst and E. Palti, Scalar Fields, Hierarchical UV/IR Mixing and The Weak Gravity Conjecture, JHEP02 (2018) 040 [arXiv:1709.01790] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  42. [42]
    P. Agrawal, G. Obied, P.J. Steinhardt and C. Vafa, On the Cosmological Implications of the String Swampland, Phys. Lett.B 784 (2018) 271 [arXiv:1806.09718] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  44. [44]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys.67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    G. Dvali, C. Gomez and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys.67 (2019) 1800094 [arXiv:1810.11002] [INSPIRE].MathSciNetGoogle Scholar
  47. [47]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B785 (2018) 570 [arXiv:1806.10999] [INSPIRE].ADSzbMATHGoogle Scholar
  48. [48]
    C. Roupec and T. Wrase, de Sitter Extrema and the Swampland, Fortsch. Phys.67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE].
  49. [49]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys.A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, Fortsch. Phys.67 (2019) 1800086 [arXiv:1808.08971] [INSPIRE].MathSciNetGoogle Scholar
  51. [51]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP12 (2018) 032 [arXiv:1809.00478] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. [52]
    G. Buratti, E. García-Valdecasas and A.M. Uranga, Supersymmetry Breaking Warped Throats and the Weak Gravity Conjecture, JHEP04 (2019) 111 [arXiv:1810.07673] [INSPIRE].
  53. [53]
    M. Montero, A Holographic Derivation of the Weak Gravity Conjecture, JHEP03 (2019) 157 [arXiv:1812.03978] [INSPIRE].
  54. [54]
    C. Córdova, G.B. De Luca and A. Tomasiello, Classical de Sitter Solutions of 10-Dimensional Supergravity, Phys. Rev. Lett.122 (2019) 091601 [arXiv:1812.04147] [INSPIRE].
  55. [55]
    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP05 (2019) 176 [arXiv:1812.05016] [INSPIRE].
  56. [56]
    T.W. Grimm, C. Li and E. Palti, Infinite Distance Networks in Field Space and Charge Orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    A.D. Linde, Chaotic Inflation, Phys. Lett.129B (1983) 177 [INSPIRE].
  58. [58]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  59. [59]
    L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
  60. [60]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The Powers of Monodromy, JHEP09 (2014) 123 [arXiv:1405.3652] [INSPIRE].
  61. [61]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev.D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].
  62. [62]
    F. Marchesano, D. Regalado and G. Zoccarato, U(1) mixing and D-brane linear equivalence, JHEP08 (2014) 157 [arXiv:1406.2729] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    D. Baumann and L. McAllister, Inflation and String Theory, arXiv:1404.2601 [INSPIRE].
  64. [64]
    L.E. Ibáñez and I. Valenzuela, The Higgs Mass as a Signature of Heavy SUSY, JHEP05 (2013) 064 [arXiv:1301.5167] [INSPIRE].
  65. [65]
    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic Inflation and String Theory, JHEP01 (2015) 128 [arXiv:1411.5380] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  66. [66]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett.B 91 (1980) 99 [INSPIRE].ADSzbMATHGoogle Scholar
  67. [67]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett.33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz.33 (1981) 549] [INSPIRE].
  68. [68]
    F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav.30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro, Quantum Horizons of the Standard Model Landscape, JHEP06 (2007) 078 [hep-th/0703067] [INSPIRE].
  70. [70]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  71. [71]
    L.E. Ibáñez, V. Martin-Lozano and I. Valenzuela, Constraining Neutrino Masses, the Cosmological Constant and BSM Physics from the Weak Gravity Conjecture, JHEP11 (2017) 066 [arXiv:1706.05392] [INSPIRE].
  72. [72]
    E. Gonzalo, A. Herráez and L.E. Ibáñez, AdS-phobia, the WGC, the Standard Model and Supersymmetry, JHEP06 (2018) 051 [arXiv:1803.08455] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    E. Gonzalo and L.E. Ibáñez, The Fundamental Need for a SM Higgs and the Weak Gravity Conjecture, Phys. Lett.B 786 (2018) 272 [arXiv:1806.09647] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Y. Hamada and G. Shiu, Weak Gravity Conjecture, Multiple Point Principle and the Standard Model Landscape, JHEP11 (2017) 043 [arXiv:1707.06326] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    J.R. Espinosa, E. Gonzalo and L.E. Ibáñez, in progress (2019).Google Scholar
  76. [76]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
  77. [77]
    C. Cheung and G.N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  78. [78]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  79. [79]
    R. Blumenhagen, D. Kläwer and L. Schlechter, Swampland Variations on a Theme by KKLT, JHEP05 (2019) 152 [arXiv:1902.07724] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Fısica Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations