One-dimensional bosonization and the SYK model

  • Jeff Murugan
  • Horatiu NastaseEmail author
Open Access
Regular Article - Theoretical Physics


We explore the possibility of extending the familiar bosonization of two dimensions to (0 + 1)-dimensional systems with a large number of degrees of freedom. As an application of this technique, we consider a class of SYK-type models, and argue that the corresponding action on the gravity dual of the SYK model is given by an STS sequence of dualities.


AdS-CFT Correspondence Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S.R. Coleman, The Quantum sine-Gordon Equation as the Massive Thirring Model, Phys. Rev.D 11 (1975) 2088 [INSPIRE].
  2. [2]
    S. Mandelstam, Soliton Operators for the Quantized sine-Gordon Equation, Phys. Rev. D 11 (1975) 3026 [INSPIRE].
  3. [3]
    M. Stone ed., Bosonization, World Scientific (1994).Google Scholar
  4. [4]
    C.P. Burgess and F. Quevedo, Bosonization as duality, Nucl. Phys.B 421 (1994) 373 [hep-th/9401105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.P. Burgess, C.A. Lütken and F. Quevedo, Bosonization in higher dimensions, Phys. Lett.B 336 (1994) 18 [hep-th/9407078] [INSPIRE].
  6. [6]
    M.E. Peskin, Mandelstamt Hooft Duality in Abelian Lattice Models, Annals Phys.113 (1978) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev.X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
  8. [8]
    M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev.B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].
  9. [9]
    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP05 (2017) 159 [arXiv:1606.01912] [INSPIRE].
  11. [11]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    H. Nastase and C. Núñez, Deriving three-dimensional bosonization and the duality web, Phys. Lett.B 776 (2018) 145 [arXiv:1703.08182] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Murugan, H. Nastase, N. Rughoonauth and J.P. Shock, Particle-vortex and Maxwell duality in the AdS 4 × ℂℙ3/ABJMcorrespondence, JHEP10 (2014) 51 [arXiv:1404.5926] [INSPIRE].
  14. [14]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev.D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J.C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.D. Boozer, Quantum field theory in (0 + 1) dimensions, Eur. J. Phys.28 (2007) 729.MathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  20. [20]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the Random Thirring Model, JHEP09 (2017) 057 [arXiv:1702.05105] [INSPIRE].
  22. [22]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Turiaci and H. Verlinde, Towards a 2d QFT Analog of the SYK Model, JHEP10 (2017) 167 [arXiv:1701.00528] [INSPIRE].
  24. [24]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP08 (2017) 146 [arXiv:1706.05362] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Nastase, Introduction to the ADS/CFT Correspondence, Cambridge University Press, Cambridge (2015) [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge (2015) [INSPIRE].
  28. [28]
    S.R. Das, A. Jevicki and K. Suzuki, Three Dimensional View of the SYK/AdS Duality, JHEP09 (2017) 017 [arXiv:1704.07208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S.R. Das, A. Ghosh, A. Jevicki and K. Suzuki, Space-Time in the SYK Model, JHEP07 (2018) 184 [arXiv:1712.02725] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Sárosi, AdS 2holography and the SYK model, PoS(Modave2017)001 (2018) [arXiv:1711.08482] [INSPIRE].
  31. [31]
    H. Nastase, String Theory Methods for Condensed Matter Physics, Cambridge University Press (2017) [INSPIRE].
  32. [32]
    S. Carlip, The (2 + 1)-Dimensional black hole, Class. Quant. Grav.12 (1995) 2853 [gr-qc/9506079] [INSPIRE].
  33. [33]
    C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev.D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFTs dual to Charged BTZ black-hole, Nucl. Phys.B 839 (2010) 526 [arXiv:0909.4051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Cadoni and M.R. Setare, Near-horizon limit of the charged BTZ black hole and AdS 2quantum gravity, JHEP07 (2008) 131 [arXiv:0806.2754] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Almheiri and J. Polchinski, Models of AdS 2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  38. [38]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Instituto de Física TeóricaUNESP-Universidade Estadual PaulistaSao PauloBrazil

Personalised recommendations