Advertisement

Junctions of mass-deformed nonlinear sigma models on the Grassmann manifold

  • Sunyoung ShinEmail author
Open Access
Article
  • 27 Downloads

Abstract

We study vacua and walls of the mass-deformed nonlinear sigma models on the Grassmann manifold \( {G}_{N_F}{N}_C=\frac{G_{N_F},\left({N}_F\right)}{SU\ \left({N}_C\right)\times SU\ \left({N}_F-{N}_C\right)\times U(1)} \) and discuss three-pronged junctions for NC = 1, 2, 3 in four dimensions.

Keywords

Solitons Monopoles and Instantons Extended Supersymmetry Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  4. [4]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Bucher and D.N. Spergel, Is the dark matter a solid?, Phys. Rev.D 60 (1999) 043505 [astro-ph/9812022] [INSPIRE].
  6. [6]
    R.A. Battye, M. Bucher and D. Spergel, Domain wall dominated universes, astro-ph/9908047 [INSPIRE].
  7. [7]
    L. Conversi, A. Melchiorri, L. Mersini-Houghton and J. Silk, Are domain walls ruled out?, Astropart. Phys.21 (2004) 443 [astro-ph/0402529] [INSPIRE].
  8. [8]
    A. Friedland, H. Murayama and M. Perelstein, Domain walls as dark energy, Phys. Rev.D 67 (2003) 043519 [astro-ph/0205520] [INSPIRE].
  9. [9]
    J.C. R.E. Oliveira, C.J. A.P. Martins and P.P. Avelino, The cosmological evolution of domain wall networks, Phys. Rev. D 71 (2005) 083509 [hep-ph/0410356] [INSPIRE].
  10. [10]
    B.M. Roberts et al., Search for domain wall dark matter with atomic clocks on board global positioning system satellites, Nature Commun.8 (2017) 1195 [arXiv:1704.06844] [INSPIRE].
  11. [11]
    E.R.C. Abraham and P.K. Townsend, Q kinks, Phys. Lett.B 291 (1992) 85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E.R.C. Abraham and P.K. Townsend, More on Q kinks: a (1 + 1)-dimensional analog of dyons, Phys. Lett.B 295 (1992) 225 [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.P. Gauntlett, D. Tong and P.K. Townsend, Multidomain walls in massive supersymmetric σ-models, Phys. Rev.D 64 (2001) 025010 [hep-th/0012178] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    D. Tong, The moduli space of BPS domain walls, Phys. Rev.D 66 (2002) 025013 [hep-th/0202012] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    M. Arai, M. Naganuma, M. Nitta and N. Sakai, Manifest supersymmetry for BPS walls in N =2 nonlinear σ-models,Nucl. Phys.B 652(2003) 35 [hep-th/0211103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Arai, E. Ivanov and J. Niederle, Massive nonlinear σ-models and BPS domain walls in harmonic superspace, Nucl. Phys.B 680 (2004) 23 [hep-th/0312037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Isozumi, K. Ohashi and N. Sakai, Massless localized vector field on a wall in D = 5 SQED with tensor multiplets, JHEP11 (2003) 061 [hep-th/0310130] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Isozumi, K. Ohashi and N. Sakai, Exact wall solutions in five-dimensional SUSY QED at finite coupling, JHEP11 (2003) 060 [hep-th/0310189] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Construction of non-Abelian walls and their complete moduli space, Phys. Rev. Lett.93 (2004) 161601 [hep-th/0404198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Non-Abelian walls in supersymmetric gauge theories, Phys. Rev.D 70 (2004) 125014 [hep-th/0405194] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    K. Higashijima and M. Nitta, Supersymmetric nonlinear σ-models as gauge theories, Prog. Theor. Phys.103 (2000) 635 [hep-th/9911139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Sakai and D. Tong, Monopoles, vortices, domain walls and D-branes: the rules of interaction, JHEP03 (2005) 019 [hep-th/0501207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    B.-H. Lee, C. Park and S. Shin, Vacua and walls of mass-deformed Kähler nonlinear σ-models on SO(2N)/U(N), Phys. Rev.D 96 (2017) 105017 [arXiv:1708.05243] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Arai, A. Golubtsova, C. Park and S. Shin, Vacua and walls of mass-deformed Kähler nonlinear σ-models on Sp(N)/U(N), Phys. Rev.D 97 (2018) 105012 [arXiv:1803.09275] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Galperin, E. Ivanov, V. Ogievetsky and P.K. Townsend, Eguchi-Hanson type metrics from harmonic superspace, Class. Quant. Grav.3 (1986) 625ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, HyperKähler metrics and harmonic superspace, Commun. Math. Phys.103 (1986) 515 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001).CrossRefGoogle Scholar
  28. [28]
    M. Arai, S.M. Kuzenko and U. Lindström, Hyper-Kähler σ-models on cotangent bundles of Hermitian symmetric spaces using projective superspace, JHEP02 (2007) 100 [hep-th/0612174] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E.R.C. Abraham and P.K. Townsend, Intersecting extended objects in supersymmetric field theories, Nucl. Phys.B 351 (1991) 313 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G.W. Gibbons and P.K. Townsend, A Bogomolny equation for intersecting domain walls, Phys. Rev. Lett.83 (1999) 1727 [hep-th/9905196] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.M. Carroll, S. Hellerman and M. Trodden, Domain wall junctions are 1/4-BPS states, Phys. Rev.D 61 (2000) 065001 [hep-th/9905217] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    P.M. Saffin, Tiling with almost BPS junctions, Phys. Rev. Lett.83 (1999) 4249 [hep-th/9907066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Gorsky and M.A. Shifman, More on the tensorial central charges in N = 1 supersymmetric gauge theories (BPS wall junctions and strings), Phys. Rev.D 61 (2000) 085001 [hep-th/9909015] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    H. Oda, K. Ito, M. Naganuma and N. Sakai, An exact solution of BPS domain wall junction, Phys. Lett.B 471 (1999) 140 [hep-th/9910095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.P. Gauntlett, D. Tong and P.K. Townsend, Supersymmetric intersecting domain walls in massive hyper-Kähler σ-models, Phys. Rev.D 63 (2001) 085001 [hep-th/0007124] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Nam and K. Olsen, Domain wall junctions in supersymmetric field theories in D = 4, JHEP08 (2000) 001 [hep-th/0002176] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Bazeia and F.A. Brito, Bags, junctions and networks of BPS and nonBPS defects, Phys. Rev.D 61 (2000) 105019 [hep-th/9912015] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Binosi and T. ter Veldhuis, Domain wall junctions in a generalized Wess-Zumino model, Phys. Lett.B 476 (2000) 124 [hep-th/9912081] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Eto et al., Webs of walls, Phys. Rev.D 72 (2005) 085004 [hep-th/0506135] [INSPIRE].
  40. [40]
    M. Eto et al., Non-Abelian webs of walls, Phys. Lett.B 632 (2006) 384 [hep-th/0508241] [INSPIRE].
  41. [41]
    M. Eto et al., Dynamics of domain wall networks, Phys. Rev.D 76 (2007) 125025 [arXiv:0707.3267] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Shin, Vacua, walls and junctions in \( {G}_{N_F}{,}_{N_C} \), Nucl. Phys.B 946. (2019) 114701 [arXiv:1804.05822] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    M. Rocek and P.K. Townsend, Three loop finiteness of the N = 4 supersymmetric nonlinear sigma model, Phys. Lett.B 96 (1980) 72.ADSCrossRefGoogle Scholar
  44. [44]
    U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear σ-models, Nucl. Phys.B 222 (1983) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Arai, M. Nitta and N. Sakai, Vacua of massive hyper-Kähler σ-models of non-Abelian quotient, Prog. Theor. Phys.113 (2005) 657 [hep-th/0307274] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Isaev and V. Rubakov, Theory of groups and symmetries, World Scientific, Singapore (2018).Google Scholar
  47. [47]
    J. Bagger and E. Witten, Matter couplings in N = 2 supergravity, Nucl. Phys.B 222 (1983) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    M. Arai, S. Fujita, M. Naganuma and N. Sakai, Wall solution with weak gravity limit in five-dimensional supergravity, Phys. Lett.B 556 (2003) 192 [hep-th/0212175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Basic ScienceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations