Advertisement

Asymptotic Bethe ansatz of ABJM open spin chain from giant graviton

  • Hui-Huang ChenEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In our previous work, the two-loop integrability of ABJM determinant like operator has been well established. In this paper, we push the integrability to all loop orders. The asymptotic Bethe ansatz equations for ABJM determinant like operator (open string attached on giant graviton) are obtained. In the derivation, the symmetries preserved by the bulk and the boundary played a crucial role. Taking the weak coupling limit and applying appropriate fermionic dualities, we obtained a different set of scalar sector Bethe equations with our previous results. When the “gauge” transformation on Bethe equations was introduced, the discrepancy disappeared.

Keywords

AdS-CFT Correspondence Bethe Ansatz Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
  2. [2]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP09 (2008) 040 [arXiv:0806.3951] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    N. Gromov and P. Vieira, The all loop AdS 4/CFT 3Bethe ansatz, JHEP01 (2009) 016 [arXiv:0807.0777] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Ahn and R.I. Nepomechie, N = 6 super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations, JHEP09 (2008) 010 [arXiv:0807.1924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of the \( \mathcal{N}=6 \)Supersymmetric Chern-Simons Theory, Phys. Rev. Lett.113 (2014) 021601 [arXiv:1403.1859] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Klose, Review of AdS/CFT Integrability, Chapter IV.3: N = 6 Chern-Simons and Strings on AdS4xCP3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].
  8. [8]
    H.-H. Chen, H. Ouyang and J.-B. Wu, Open Spin Chains from Determinant Like Operators in ABJM Theory, Phys. Rev.D 98 (2018) 106012 [arXiv:1809.09941] [INSPIRE].
  9. [9]
    D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP06 (2005) 059 [hep-th/0501078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP11 (2007) 063 [arXiv:0708.2272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Giovannoni, J. Murugan and A. Prinsloo, The giant graviton on AdS 4 × CP 3another step towards the emergence of geometry, JHEP12 (2011) 003 [arXiv:1108.3084] [INSPIRE].
  12. [12]
    C. Cardona and H. Nastase, Open strings on D-branes from ABJM, JHEP06 (2015) 016 [arXiv:1407.1764] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Bai, H.-H. Chen, H. Ouyang and J.-B. Wu, Two-Loop Integrability of ABJM Open Spin Chain from Giant Graviton, JHEP03 (2019) 193 [arXiv:1901.03949] [INSPIRE].
  14. [14]
    J.A. Minahan, O. Ohlsson Sax and C. Sieg, Magnon dispersion to four loops in the ABJM and ABJ models, J. Phys.A 43 (2010) 275402 [arXiv:0908.2463] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  15. [15]
    J.A. Minahan, O. Ohlsson Sax and C. Sieg, Anomalous dimensions at four loops in N = 6 superconformal Chern-Simons theories, Nucl. Phys.B 846 (2011) 542 [arXiv:0912.3460] [INSPIRE].
  16. [16]
    M. Leoni et al., Superspace calculation of the four-loop spectrum in N = 6 supersymmetric Chern-Simons theories, JHEP12 (2010) 074 [arXiv:1010.1756] [INSPIRE].
  17. [17]
    N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in N = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett.113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].
  18. [18]
    G. Arutyunov and S. Frolov, The S-matrix of String Bound States, Nucl. Phys.B 804 (2008) 90 [arXiv:0803.4323] [INSPIRE].
  19. [19]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].zbMATHGoogle Scholar
  20. [20]
    S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys.A 9 (1994) 3841 [Erratum ibid.A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].
  21. [21]
    C. Ahn and R.I. Nepomechie, The Zamolodchikov-Faddeev algebra for open strings attached to giant gravitons, JHEP05 (2008) 059 [arXiv:0804.4036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H.-Y. Chen and D.H. Correa, Comments on the Boundary Scattering Phase, JHEP02 (2008) 028 [arXiv:0712.1361] [INSPIRE].
  23. [23]
    Z. Bajnok and L. Palla, Boundary finite size corrections for multiparticle states and planar AdS/CFT, JHEP01 (2011) 011 [arXiv:1010.5617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    Z. Bajnok, R.I. Nepomechie, L. Palla and R. Suzuki, Y-system for Y = 0 brane in planar AdS/CFT, JHEP08 (2012) 149 [arXiv:1205.2060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.-r. Ahn and R.I. Nepomechie, Exact solution of the supersymmetric sinh-Gordon model with boundary, Nucl. Phys. B 586 (2000) 611 [hep-th/0005170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in N = 4 SYM at one loop, JHEP07 (2005) 030 [hep-th/0503200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    N. Bai, H.-H. Chen, X.-C. Ding, D.-S. Li and J.-B. Wu, Integrability of Orbifold ABJM Theories, JHEP11 (2016) 101 [arXiv:1607.06643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R.I. Nepomechie, Bethe ansatz equations for open spin chains from giant gravitons, JHEP05 (2009) 100 [arXiv:0903.1646] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R.I. Nepomechie, Revisiting the Y = 0 open spin chain at one loop, JHEP11 (2011) 069 [arXiv:1109.4366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina

Personalised recommendations