Advertisement

Collider constraints on Z models for neutral current B-anomalies

  • B. C. Allanach
  • J. M. Butterworth
  • Tyler CorbettEmail author
Open Access
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

We examine current collider constraints on some simple Z models that fit neutral current B-anomalies, including constraints coming from measurements of Standard Model (SM) signatures at the LHC. The ‘MDM’ simplified model is not constrained by the SM measurements but is strongly constrained by a 139 fb−1 13 TeV ATLAS di-muon search. Constraints upon the ‘MUM’ simplified model are much weaker. A combination of the current Bs mixing constraint and ATLAS’ Z search implies \( {M}_{Z^{\prime }}>1.2 \) TeV in the Third Family Hypercharge Model example case. LHC SM measurements rule out a portion of the parameter space of the model for \( {M}_{Z^{\prime }}>1.5 \) TeV.

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11110_MOESM1_ESM.tgz (1.3 mb)
ESM 1 (TGZ 1283 kb)

References

  1. [1]
    LHCb collaboration, Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  2. [2]
    LHCb collaboration, Search for lepton-universality violation in B +K + + decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [CERN-EP-2019-043] [LHCB-PAPER-2019-009] [INSPIRE].
  3. [3]
    ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098 [arXiv:1812.03017] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the \( {B}_s^0\to {\mu}^{+}{\mu}^{-} \) Branching Fraction and Search for B 0μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].
  5. [5]
    CMS and LHCb collaborations, Observation of the rare \( {B}_s^0\to {\mu}^{+}{\mu}^{-} \) decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  6. [6]
    LHCb collaboration, Measurement of the \( {B}_s^0\to {\mu}^{+}{\mu}^{-} \) branching fraction and effective lifetime and search for B 0μ + μ decays, Phys. Rev. Lett. 118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  8. [8]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  9. [9]
    ATLAS collaboration, Angular analysis of \( {B}_d^0\to {K}^{\ast }{\mu}^{+}{\mu}^{-} \) decays in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2017-023 (2017) [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of the P 1 and \( {P}_5^{\prime } \) angular parameters of the decay B 0K ∗0 μ + μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-BPH-15-008 (2017) [INSPIRE].
  11. [11]
    CMS collaboration, Angular analysis of the decay B 0K ∗0 μ + μ from pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 753 (2016) 424 [arXiv:1507.08126] [INSPIRE].
  12. [12]
    C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, Long-distance effects in BK ℓℓ from analyticity, Eur. Phys. J. C 78 (2018) 451 [arXiv:1707.07305] [INSPIRE].
  13. [13]
    W. Altmannshofer and D.M. Straub, New Physics in BK μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].
  14. [14]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].
  15. [15]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].
  16. [16]
    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].
  17. [17]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].
  18. [18]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].
  19. [19]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{\ast }} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].
  20. [20]
    S. Di Chiara et al., Minimal flavor-changing Z models and muon g − 2 after the \( {R}_{K^{\ast }} \) measurement, Nucl. Phys. B 923 (2017) 245 [arXiv:1704.06200] [INSPIRE].
  21. [21]
    J. Albrecht, F. Bernlochner, M. Kenzie, S. Reichert, D. Straub and A. Tully, Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb, arXiv:1709.10308 [INSPIRE].
  22. [22]
    M. Algueró et al., Emerging patterns of New Physics with and without Lepton Flavour Universal contributions, arXiv:1903.09578 [INSPIRE].
  23. [23]
    A.K. Alok, A. Dighe, S. Gangal and D. Kumar, Continuing search for new physics in bsμμ decays: two operators at a time, JHEP 06 (2019) 089 [arXiv:1903.09617] [INSPIRE].
  24. [24]
    M. Ciuchini et al., New Physics in bsℓ + confronts new data on Lepton Universality, arXiv:1903.09632 [INSPIRE].
  25. [25]
    J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D.M. Straub, B-decay discrepancies after Moriond 2019, arXiv:1903.10434 [INSPIRE].
  26. [26]
    K. Kowalska, D. Kumar and E.M. Sessolo, Implications for New Physics in bsμμ transitions after recent measurements by Belle and LHCb, arXiv:1903.10932 [INSPIRE].
  27. [27]
    A. Arbey, T. Hurth, F. Mahmoudi, D.M. Santos and S. Neshatpour, Update on the bs anomalies, arXiv:1904.08399 [INSPIRE].
  28. [28]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Models for Flavour Anomalies, Eur. Phys. J. C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].
  29. [29]
    B.C. Allanach, J. Davighi and S. Melville, An Anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082 [arXiv:1812.04602] [INSPIRE].
  30. [30]
    R. Gauld, F. Goertz and U. Haisch, On minimal Z explanations of the BK μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].
  31. [31]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].
  32. [32]
    A.J. Buras and J. Girrbach, Left-handed Z and Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].
  33. [33]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μL τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].
  34. [34]
    A.J. Buras, F. De Fazio and J. Girrbach-Noe, Z-Z mixing and Z-mediated FCNCs in SU(3)C × SU(3)L × U(1)X models, JHEP 08 (2014) 039 [arXiv:1405.3850] [INSPIRE].
  35. [35]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μL τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].
  36. [36]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].
  37. [37]
    D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the bs anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].
  38. [38]
    A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski and J. Rosiek, Lepton-flavour violating B decays in generic Z models, Phys. Rev. D 92 (2015) 054013 [arXiv:1504.07928] [INSPIRE].
  39. [39]
    A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Z models with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].
  40. [40]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].
  41. [41]
    W. Altmannshofer and I. Yavin, Predictions for lepton flavor universality violation in rare B decays in models with gauged L μL τ, Phys. Rev. D 92 (2015) 075022 [arXiv:1508.07009] [INSPIRE].
  42. [42]
    B. Allanach, F.S. Queiroz, A. Strumia and S. Sun, Z models for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [Erratum ibid. D 95 (2017) 119902] [arXiv:1511.07447] [INSPIRE].
  43. [43]
    A. Falkowski, M. Nardecchia and R. Ziegler, Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].
  44. [44]
    C.-W. Chiang, X.-G. He and G. Valencia, Z model for b\( s\mathrm{\ell}\overline{\mathrm{\ell}} \) flavor anomalies, Phys. Rev. D 93 (2016) 074003 [arXiv:1601.07328] [INSPIRE].
  45. [45]
    D. Bečirević, O. Sumensari and R. Zukanovich Funchal, Lepton flavor violation in exclusive bs decays, Eur. Phys. J. C 76 (2016) 134 [arXiv:1602.00881] [INSPIRE].
  46. [46]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].
  47. [47]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].
  48. [48]
    P. Ko, Y. Omura, Y. Shigekami and C. Yu, LHCb anomaly and B physics in flavored Z models with flavored Higgs doublets, Phys. Rev. D 95 (2017) 115040 [arXiv:1702.08666] [INSPIRE].
  49. [49]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Anomaly-free local horizontal symmetry and anomaly-full rare B-decays, Phys. Rev. D 96 (2017) 071701 [arXiv:1704.08158] [INSPIRE].
  50. [50]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured BL local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].
  51. [51]
    Y. Tang and Y.-L. Wu, Flavor non-universal gauge interactions and anomalies in B-meson decays, Chin. Phys. C 42 (2018) 033104 [arXiv:1705.05643] [INSPIRE].
  52. [52]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \) gauge symmetry as a simple description of bs anomalies, Phys. Rev. D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].
  53. [53]
    D. Bhatia, S. Chakraborty and A. Dighe, Neutrino mixing and R K anomaly in U(1)X models: a bottom-up approach, JHEP 03 (2017) 117 [arXiv:1701.05825] [INSPIRE].
  54. [54]
    C.-H. Chen and T. Nomura, Penguin bsℓ + and B-meson anomalies in a gauged L μL τ, Phys. Lett. B 777 (2018) 420 [arXiv:1707.03249] [INSPIRE]
  55. [55]
    G. Faisel and J. Tandean, Connecting b\( s\mathrm{\ell}\overline{\mathrm{\ell}} \) anomalies to enhanced rare nonleptonic \( {\overline{B}}_s^0 \) decays in Z model, JHEP 02 (2018) 074 [arXiv:1710.11102] [INSPIRE].
  56. [56]
    K. Fuyuto, H.-L. Li and J.-H. Yu, Implications of hidden gauged U(1) model for B anomalies, Phys. Rev. D 97 (2018) 115003 [arXiv:1712.06736] [INSPIRE].
  57. [57]
    L. Bian, H.M. Lee and C.B. Park, B-meson anomalies and Higgs physics in flavored U(1) model, Eur. Phys. J. C 78 (2018) 306 [arXiv:1711.08930] [INSPIRE].
  58. [58]
    M. Abdullah et al., Bottom-quark fusion processes at the LHC for probing Z models and B-meson decay anomalies, Phys. Rev. D 97 (2018) 075035 [arXiv:1707.07016] [INSPIRE].
  59. [59]
    S.F. King, \( {R}_{K^{\left(\ast \right)}} \) and the origin of Yukawa couplings, JHEP 09 (2018) 069 [arXiv:1806.06780] [INSPIRE].
  60. [60]
    G.H. Duan, X. Fan, M. Frank, C. Han and J.M. Yang, A minimal U(1) extension of MSSM in light of the B decay anomaly, Phys. Lett. B 789 (2019) 54 [arXiv:1808.04116] [INSPIRE].
  61. [61]
    B.C. Allanach and J. Davighi, Third family hypercharge model for \( {R}_{K^{\left(\ast \right)}} \) and aspects of the fermion mass problem, JHEP 12 (2018) 075 [arXiv:1809.01158] [INSPIRE].
  62. [62]
    B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z s for \( {R}_{K^{\left(\ast \right)}} \), JHEP 03 (2019) 137 [arXiv:1810.02166] [INSPIRE].
  63. [63]
    A. Crivellin, J. Fuentes-Martin, A. Greljo and G. Isidori, Lepton Flavor Non-Universality in B decays from Dynamical Yukawas, Phys. Lett. B 766 (2017) 77 [arXiv:1611.02703] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.F. Kamenik, Y. Soreq and J. Zupan, Lepton flavor universality violation without new sources of quark flavor violation, Phys. Rev. D 97 (2018) 035002 [arXiv:1704.06005] [INSPIRE].
  65. [65]
    J.E. Camargo-Molina, A. Celis and D.A. Faroughy, Anomalies in Bottom from new physics in Top, Phys. Lett. B 784 (2018) 284 [arXiv:1805.04917] [INSPIRE].
  66. [66]
    R.S. Chivukula, J. Isaacson, K.A. Mohan, D. Sengupta and E.H. Simmons, R K anomalies and simplified limits on Z models at the LHC, Phys. Rev. D 96 (2017) 075012 [arXiv:1706.06575] [INSPIRE].
  67. [67]
    B.C. Allanach, B. Gripaios and T. You, The case for future hadron colliders from BK (∗) μ + μ decays, JHEP 03 (2018) 021 [arXiv:1710.06363] [INSPIRE].
  68. [68]
    FCC collaboration, FCC Physics Opportunities, Eur. Phys. J. C 79 (2019) 474 [INSPIRE].
  69. [69]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  70. [70]
    ATLAS collaboration, Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 092004 [arXiv:1902.10077] [INSPIRE].
  71. [71]
    ATLAS collaboration, A search for high-mass resonances decaying to τ + τ in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 07 (2015) 157 [arXiv:1502.07177] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb −1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
  73. [73]
    ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb −1 of pp collision data collected at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
  74. [74]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  75. [75]
    D. King, A. Lenz and T. Rauh, B s mixing observables and |V td /V ts| from sum rules, JHEP 05 (2019) 034 [arXiv:1904.00940] [INSPIRE].
  76. [76]
    L. Di Luzio, M. Kirk and A. Lenz, Updated B s -mixing constraints on new physics models for bsℓ + anomalies, Phys. Rev. D 97 (2018) 095035 [arXiv:1712.06572] [INSPIRE].
  77. [77]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
  78. [78]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  79. [79]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  80. [80]
    M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, Anatomy of double heavy-quark initiated processes, JHEP 09 (2016) 132 [arXiv:1605.09411] [INSPIRE].
  81. [81]
    J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin and D. Yallup, Constraining new physics with collider measurements of Standard Model signatures, JHEP 03 (2017) 078 [arXiv:1606.05296] [INSPIRE].
  82. [82]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  83. [83]
    J. Bellm et al., HERWIG 7.1 Release Note, arXiv:1705.06919 [INSPIRE].
  84. [84]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].
  85. [85]
    G. Brooijmans et al., Proceedings of the Les Houches 2017: Physics at TeV Colliders New Physics Working Group Report, Les Houches, France, 5-23 June 2017, arXiv:1803.10379 [INSPIRE].
  86. [86]
    S. Amrith, J.M. Butterworth, F.F. Deppisch, W. Liu, A. Varma and D. Yallup, LHC constraints on a BL gauge model using Contur, JHEP 05 (2019) 154 [arXiv:1811.11452] [INSPIRE].
  87. [87]
    ATLAS collaboration, Measurements of inclusive and differential fiducial cross-sections of tt production with additional heavy-flavour jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04 (2019) 046 [arXiv:1811.12113] [INSPIRE].
  88. [88]
    ATLAS collaboration, Search for triboson W ± W ± W production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 141 [arXiv:1610.05088] [INSPIRE].
  89. [89]
    CMS collaboration, Measurement of differential cross sections for top quark pair production using the lepton + jets final state in proton-proton collisions at 13 TeV, Phys. Rev. D 95 (2017) 092001 [arXiv:1610.04191] [INSPIRE].
  90. [90]
    ATLAS collaboration, Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 08 (2016) 009 [arXiv:1606.01736] [INSPIRE].
  91. [91]
    Working Group 3, Beyond the Standard Model Physics at the HL-LHC and HE-LHC, arXiv:1812.07831 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • B. C. Allanach
    • 1
  • J. M. Butterworth
    • 2
  • Tyler Corbett
    • 3
    Email author
  1. 1.DAMTP, University of CambridgeCambridgeUnited Kingdom
  2. 2.Department of Physics & AstronomyUniversity College LondonLondonUnited Kingdom
  3. 3.The Niels Bohr International AcademyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations