Advertisement

The direct CP violation in a general two Higgs doublet model

  • Syuhei IguroEmail author
  • Yuji Omura
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we study the CP violating processes in a general two-Higgs-doublet model (2HDM) with tree-level flavor changing neutral currents. In this model, sizable Yukawa couplings involving top and charm quarks are still allowed by the collider and flavor experiments, while the other couplings are strongly constrained experimentally. The sizable couplings, in general, have imaginary parts and could largely contribute to the CP violating observables concerned with the B and K mesons. In particular, the contribution may be so large that it affects the direct CP violating K meson decay, where the discrepancy between the experimental result and the Standard Model prediction is reported. We discuss how well the anomaly is resolved in the 2HDM, based on study of the other flavor observables. We also propose the way to test our 2HDM at the LHC.

Keywords

Beyond Standard Model CP violation Higgs Physics Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    H. Georgi, The state of the artgauge theories, AIP Conf. Proc.23 (1975) 575 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys.93 (1975) 193 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    K.S. Babu and R.N. Mohapatra, A solution to the strong CP problem without an axion, Phys. Rev.D 41 (1990) 1286 [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Huitu and J. Maalampi, The Higgs sector of a supersymmetric left-right model, Phys. Lett.B 344 (1995) 217 [hep-ph/9410342] [INSPIRE].
  6. [6]
    M. Frank, D.K. Ghosh, K. Huitu, S.K. Rai, I. Saha and H. Waltari, Left-right supersymmetry after the Higgs boson discovery, Phys. Rev.D 90 (2014) 115021 [arXiv:1408.2423] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K.S. Babu and A. Patra, Higgs boson spectra in supersymmetric left-right models, Phys. Rev.D 93 (2016) 055030 [arXiv:1412.8714] [INSPIRE].
  8. [8]
    M. Frank and B. Korutlu, Higgs bosons in a minimal R-parity conserving left-right supersymmetric model, Phys. Rev.D 83 (2011) 073007 [arXiv:1101.3601] [INSPIRE].
  9. [9]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs sector of the minimal left-right symmetric model at future hadron colliders, JHEP05 (2016) 174 [arXiv:1602.05947] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    S. Iguro, Y. Muramatsu, Y. Omura and Y. Shigekami, Flavor physics in the multi-Higgs doublet models induced by the left-right symmetry, JHEP11 (2018) 046 [arXiv:1804.07478] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)decays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  12. [12]
    BaBar collaboration, Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)decays and implications for charged Higgs bosons, Phys. Rev.D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  13. [13]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \beta \left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\beta \left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  14. [14]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\mathrm{\ell}}^{-}{\overline{\nu}}_{\mathrm{\ell}} \)decays with hadronic tagging at Belle, Phys. Rev.D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  15. [15]
    Belle collaboration, Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \)relative to \( {\overline{B}}^0\to {D}^{\left(\ast \right)}{\mathrm{\ell}}^{-}{\overline{\nu}}_{\mathrm{\ell}} \)decays with a semileptonic tagging method, Phys. Rev.D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  16. [16]
    Belle collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett.118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  17. [17]
    LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0 → K ∗0μ +μ , Phys. Rev. Lett.111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  18. [18]
    LHCb collaboration, Angular analysis of the B 0 → K ∗0μ +μ decay using 3 fb −1of integrated luminosity, JHEP02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  19. [19]
    LHCb collaboration, Test of lepton universality with B + → K ++decays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  20. [20]
    LHCb collaboration, Test of lepton universality using B + → K ++decays, Phys. Rev. Lett.113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  21. [21]
    LHCb collaboration, Search for lepton-universality violation in B + → K ++decays, Phys. Rev. Lett.122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].
  22. [22]
    Belle collaboration, Test of lepton flavor universality in B → K ∗ ℓ+decays at Belle, arXiv:1904.02440 [INSPIRE].
  23. [23]
    Belle collaboration, Measurement of ℛ(D) and ℛ(D ) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
  24. [24]
    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev.D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (∗)τ ν τand Bτν τdecays, JHEP01 (2013) 054 [arXiv:1210.8443] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\ast }{\tau}^{-}\overline{\nu} \), Phys. Rev.D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev.D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett.116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J.M. Cline, Scalar doublet models confront τ and b anomalies, Phys. Rev.D 93 (2016) 075017 [arXiv:1512.02210] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Ko, Y. Omura, Y. Shigekami and C. Yu, LHCb anomaly and B physics in flavored Zmodels with flavored Higgs doublets, Phys. Rev.D 95 (2017) 115040 [arXiv:1702.08666] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. Ko, Y. Omura and C. Yu, BD (∗)τ ν and Bτ ν in chiral U(1)models with flavored multi Higgs doublets, JHEP03 (2013) 151 [arXiv:1212.4607] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    S. Iguro and K. Tobe, R(D (∗)) in a general two Higgs doublet model, Nucl. Phys.B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    L. Bian, S.-M. Choi, Y.-J. Kang and H.M. Lee, A minimal flavored U(1)for B-meson anomalies, Phys. Rev.D 96 (2017) 075038 [arXiv:1707.04811] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L. Bian, H.M. Lee and C.B. Park, B-meson anomalies and Higgs physics in flavored U(1)model, Eur. Phys. J.C 78 (2018) 306 [arXiv:1711.08930] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    R. Martinez, C.F. Sierra and G. Valencia, Beyond ℛ(D (∗)) with the general type-III 2HDM for bcτ ν, Phys. Rev.D 98 (2018) 115012 [arXiv:1805.04098] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Iguro, Y. Omura and M. Takeuchi, Test of the R(D (∗)) anomaly at the LHC, Phys. Rev.D 99 (2019) 075013 [arXiv:1810.05843] [INSPIRE].ADSGoogle Scholar
  37. [37]
    Q.-Y. Hu, X.-Q. Li and Y.-D. Yang, B 0K ∗0μ +μ decay in the aligned two-Higgs-doublet model, Eur. Phys. J.C 77 (2017) 190 [arXiv:1612.08867] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    P. Arnan, D. Bečirević, F. Mescia and O. Sumensari, Two Higgs doublet models and bs exclusive decays, Eur. Phys. J.C 77 (2017) 796 [arXiv:1703.03426] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    S.-P. Li, X.-Q. Li, Y.-D. Yang and X. Zhang, R D(∗), R K(∗)and neutrino mass in the 2HDM-III with right-handed neutrinos, JHEP09 (2018) 149 [arXiv:1807.08530] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    S. Iguro and Y. Omura, Status of the semileptonic B decays and muon g − 2 in general 2HDMs with right-handed neutrinos, JHEP05 (2018) 173 [arXiv:1802.01732] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    Y. Omura, E. Senaha and K. Tobe, Lepton-flavor-violating Higgs decay hμτ and muon anomalous magnetic moment in a general two Higgs doublet model, JHEP05 (2015) 028 [arXiv:1502.07824] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    Y. Omura, E. Senaha and K. Tobe, τ - and μ-physics in a general two Higgs doublet model with μ-τ flavor violation, Phys. Rev.D 94 (2016) 055019 [arXiv:1511.08880] [INSPIRE].
  43. [43]
    S. Iguro, Y. Omura and M. Takeuchi, Testing the 2HDM explanation of the muon g – 2 anomaly at the LHC, arXiv:1907.09845 [INSPIRE].
  44. [44]
    T.P. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev.D 35 (1987) 3484 [INSPIRE].ADSGoogle Scholar
  45. [45]
    K.S. Babu and S. Jana, Enhanced di-Higgs production in the two Higgs doublet model, JHEP02 (2019) 193 [arXiv:1812.11943] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    NA48 collaboration, A precision measurement of direct CP-violation in the decay of neutral kaons into two pions, Phys. Lett.B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].
  47. [47]
    KTeV collaboration, Measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev.D 67 (2003) 012005 [Erratum ibid.D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].
  48. [48]
    KTeV collaboration, Precise measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev.D 83 (2011) 092001 [arXiv:1011.0127] [INSPIRE].
  49. [49]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ϵ /ϵ in the Standard Model, JHEP11 (2015) 202 [arXiv:1507.06345] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and \( {\upepsilon}_K^{\prime }/{\upepsilon}_K \)in the Standard Model and beyond, JHEP12 (2016)078 [arXiv:1607.06727] [INSPIRE].
  51. [51]
    T. Blum et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev.D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].ADSGoogle Scholar
  52. [52]
    RBC and UKQCD collaborations, Standard Model prediction for direct CP-violation in Kππ decay, Phys. Rev. Lett.115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].
  53. [53]
    A.J. Buras and J.-M. Gérard, Upper bounds on ϵ /ϵ parameters \( {B}_6^{\left(1/2\right)} \)and \( {B}_8^{\left(3/2\right)} \)from large N QCD and other news, JHEP12 (2015) 008 [arXiv:1507.06326] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A.J. Buras and J.-M. Gérard, Final state interactions in Kππ decays: ΔI = 1/2 rule vs. ϵ, Eur. Phys. J.C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].
  55. [55]
    H. Gisbert and A. Pich, Direct CP-violation in K 0ππ: Standard Model status, Rept. Prog. Phys.81 (2018) 076201 [arXiv:1712.06147] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    J. Aebischer, C. Bobeth, A.J. Buras and D.M. Straub, Anatomy of ϵ /ϵ beyond the Standard Model, Eur. Phys. J.C 79 (2019) 219 [arXiv:1808.00466] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    A.J. Buras and F. De Fazio, ϵ /ϵ in 331 models, JHEP03 (2016) 010 [arXiv:1512.02869] [INSPIRE].
  58. [58]
    M. Tanimoto and K. Yamamoto, Probing SUSY with 10 TeV stop mass in rare decays and CP-violation of kaon, PTEP2016 (2016) 123B02 [arXiv:1603.07960] [INSPIRE].
  59. [59]
    A.J. Buras and F. De Fazio, 331 models facing the tensions in ΔF = 2 processes with the impact on ϵ /ϵ, B sμ +μ and BK μ +μ , JHEP08 (2016) 115 [arXiv:1604.02344] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Chargino contributions in light of recent ϵ, Phys. Lett.B 762 (2016) 493 [arXiv:1608.01444] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Patterns of flavour violation in models with vector-like quarks, JHEP04 (2017) 079 [arXiv:1609.04783] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting kaon physics in general Z scenario, Phys. Lett.B 771 (2017) 37 [arXiv:1612.08839] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, JHEP07 (2017) 124 [arXiv:1703.04753] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    A. Crivellin, G. D’Ambrosio, T. Kitahara and U. Nierste, \( K\to \pi \nu \overline{\nu} \)in the MSSM in light of the \( {\upepsilon}_K^{\prime }/{\upepsilon}_K \)anomaly, Phys. Rev.D 96 (2017) 015023 [arXiv:1703.05786] [INSPIRE].
  65. [65]
    N. Haba, H. Umeeda and T. Yamada, ϵ /ϵ anomaly and neutron EDM in SU(2)L × SU(2)R × U(1)BLmodel with charge symmetry, JHEP05 (2018) 052 [arXiv:1802.09903] [INSPIRE].
  66. [66]
    N. Haba, H. Umeeda and T. Yamada, Direct CP-violation in Cabibbo-favored charmed meson decays and ϵ /ϵ in SU(2)L × SU(2)R × U(1)BLmodel, JHEP10 (2018) 006 [arXiv:1806.03424] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    B. Altunkaynak, W.-S. Hou, C. Kao, M. Kohda and B. McCoy, Flavor changing heavy Higgs interactions at the LHC, Phys. Lett.B 751 (2015) 135 [arXiv:1506.00651] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    C.-H. Chen and T. Nomura, Re(\( {\upepsilon}_K^{\prime }/{\upepsilon}_K \)) and Kπν \( \overline{\nu} \)in a two-Higgs doublet model, JHEP08 (2018) 145 [arXiv:1804.06017] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett.B 82 (1979) 95 [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev.D 19 (1979) 945 [INSPIRE].ADSGoogle Scholar
  71. [71]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    A.J. Buras, M. Jamin and M.E. Lautenbacher, The anatomy of ϵ /ϵ beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys.B 408 (1993) 209 [hep-ph/9303284] [INSPIRE].
  73. [73]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys.68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  74. [74]
    A.J. Buras, New physics patterns in ϵ /ϵ and ϵ Kwith implications for rare kaon decays and ΔM K, JHEP04 (2016) 071 [arXiv:1601.00005] [INSPIRE].ADSGoogle Scholar
  75. [75]
    V. Cirigliano, A. Pich, G. Ecker and H. Neufeld, Isospin violation in ϵ , Phys. Rev. Lett.91 (2003) 162001 [hep-ph/0307030] [INSPIRE].
  76. [76]
    C.-H. Chen and T. Nomura, ϵ /ϵ from charged-Higgs-induced gluonic dipole operators, Phys. Lett.B 787 (2018) 182 [arXiv:1805.07522] [INSPIRE].
  77. [77]
    UTfit collaboration, Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  78. [78]
    New physics fit results: summer 2018 webpage, http://www.utfit.org/UTfit/ResultsSummer2018NP.
  79. [79]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  80. [80]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ +μ , JHEP01 (2004) 009 [hep-ph/0311084] [INSPIRE].
  81. [81]
    A.J. Buras, D. Buttazzo and R. Knegjens, Kπν \( \overline{\nu} \)and ϵ /ϵ in simplified new physics models, JHEP11 (2015) 166 [arXiv:1507.08672] [INSPIRE].CrossRefADSGoogle Scholar
  82. [82]
    NA62 collaboration, Results and prospects for Kπν \( \overline{\nu} \)at NA62 and KOTO, EPJ Web Conf.199 (2019) 01007 [arXiv:1809.05384] [INSPIRE].
  83. [83]
    G. Buchalla and A.J. Buras, The rare decays Kπν \( \overline{\nu} \), BXν\( \overline{\nu} \)and B → ℓ+: an update, Nucl. Phys.B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].
  84. [84]
    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, K +π +ν \( \overline{\nu} \)and K Lπ 0ν \( \overline{\nu} \)in the Standard Model: status and perspectives, JHEP11 (2015) 033 [arXiv:1503.02693] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, B s,d → ℓ+in the Standard Model with reduced theoretical uncertainty, Phys. Rev. Lett.112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].
  86. [86]
    C. Bobeth and A.J. Buras, Leptoquarks meet ϵ /ϵ and rare kaon processes, JHEP02 (2018) 101 [arXiv:1712.01295] [INSPIRE].
  87. [87]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  88. [88]
    ATLAS collaboration, Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 99 (2019) 052009 [arXiv:1811.02305] [INSPIRE].
  89. [89]
    CMS collaboration, Search for Standard Model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 78 (2018)140 [arXiv:1710.10614] [INSPIRE].
  90. [90]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  91. [91]
    ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, ATLAS-CONF-2016-089, CERN, Geneva, Switzerland (2016).
  92. [92]
    CMS collaboration, Search for resonant \( t\overline{t} \)production in proton-proton collisions at \( \sqrt{s} \) =13TeV,JHEP04 (2019) 031 [arXiv:1810.05905][INSPIRE].
  93. [93]
    ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].
  94. [94]
    W.-S. Hou, M. Kohda and T. Modak, Constraining a lighter exotic scalar via same-sign top, Phys. Lett.B 786 (2018) 212 [arXiv:1808.00333] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    C. Marzo, L. Marzola and M. Raidal, Common explanation to the R K(∗), R D(∗) and ϵ /ϵ anomalies in a 3HDM+ν Rand connections to neutrino physics, arXiv:1901.08290 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan
  2. 2.Department of PhysicsKindai UniversityHigashi-OsakaJapan

Personalised recommendations