Advertisement

Gaugino mediation scenarios for muon g − 2 and dark matter

  • Peter Cox
  • Chengcheng HanEmail author
  • Tsutomu T. Yanagida
  • Norimi Yokozaki
Open Access
Regular Article - Theoretical Physics

Abstract

We explore the possibility that the muon g − 2 anomaly and the nature of dark matter can be simultaneously explained within the framework of gaugino mediation, focusing on bino-like dark matter where the observed abundance is obtained via co-annihilations. The minimal model with non-universal gaugino masses is excluded by stau vacuum instability, although this constraint can be somewhat relaxed via the addition of a universal soft scalar mass (or BL gaugino mediation). A more promising alternative is gaugino+Higgs mediation, which significantly raises the soft masses of the third generation sfermions leading to a split spectrum. In this framework, the muon g − 2 can be easily explained and the dark matter abundance obtained through either bino-wino or bino-slepton co-annihilations.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Muon g-2 collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  2. [2]
    Muon g-2 collaboration, The muon g − 2 experiment at Fermilab, EPJ Web Conf. 137 (2017)08001 [arXiv:1701.02807] [INSPIRE].
  3. [3]
    G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g − 2) explanation, Phys. Lett.B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].
  4. [4]
    M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, The electroweak sector of the pMSSM in the light of LHC — 8 TeV and other data, JHEP07 (2014) 019 [arXiv:1404.4841] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.P. Das, M. Guchait and D.P. Roy, Testing SUSY models for the muon g − 2 anomaly via chargino-neutralino pair production at the LHC, Phys. Rev.D 90 (2014) 055011 [arXiv:1406.6925] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Li and S. Raza, Electroweak supersymmetry from the generalized minimal supergravity model in the MSSM, Phys. Rev.D 91 (2015) 055016 [arXiv:1409.3930] [INSPIRE].
  7. [7]
    K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP06 (2015) 020 [arXiv:1503.08219] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Wang, W. Wang and J.M. Yang, Reconcile muon g − 2 anomaly with LHC data in SUGRA with generalized gravity mediation, JHEP06 (2015) 079 [arXiv:1504.00505] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B.P. Padley, K. Sinha and K. Wang, Natural supersymmetry, muon g − 2 and the last crevices for the top squark, Phys. Rev.D 92 (2015) 055025 [arXiv:1505.05877] [INSPIRE].
  10. [10]
    M.A. Ajaib, B. Dutta, T. Ghosh, I. Gogoladze and Q. Shafi, Neutralinos and sleptons at the LHC in light of muon (g − 2)μ, Phys. Rev.D 92 (2015) 075033 [arXiv:1505.05896] [INSPIRE].
  11. [11]
    M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, Reduced LHC constraints for higgsino-like heavier electroweakinos, JHEP11 (2015) 050 [arXiv:1507.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Kobakhidze, M. Talia and L. Wu, Probing the MSSM explanation of the muon g – 2 anomaly in dark matter experiments and at a 100 TeV pp collider, Phys. Rev.D 95 (2017) 055023 [arXiv:1608.03641] [INSPIRE].
  13. [13]
    M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g − 2 and dark matter, JHEP06 (2017) 031 [arXiv:1704.05287] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Bagnaschi et al., Likelihood analysis of the pMSSM11 in light of LHC 13 TeV data, Eur. Phys. J.C 78 (2018) 256 [arXiv:1710.11091] [INSPIRE].
  15. [15]
    C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP05 (2013) 100 [arXiv:1211.4873] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate m A, Phys. Rev.D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].
  17. [17]
    T. Han, F. Kling, S. Su and Y. Wu, Unblinding the dark matter blind spots, JHEP02 (2017) 057 [arXiv:1612.02387] [INSPIRE].
  18. [18]
    P. Huang, R.A. Roglans, D.D. Spiegel, Y. Sun and C.E.M. Wagner, Constraints on supersymmetric dark matter for heavy scalar superpartners, Phys. Rev. D 95 (2017) 095021 [arXiv:1701.02737] [INSPIRE].
  19. [19]
    T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, JHEP11 (2013)008 [arXiv:1303.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Bélanger, F. Boudjema, A. Cottrant, R.M. Godbole and A. Semenov, The MSSM invisible Higgs in the light of dark matter and g − 2, Phys. Lett.B 519 (2001) 93 [hep-ph/0106275] [INSPIRE].
  21. [21]
    H. Baer, T. Krupovnickas, A. Mustafayev, E.-K. Park, S. Profumo and X. Tata, Exploring the BWCA (bino-wino co-annihilation) scenario for neutralino dark matter, JHEP12 (2005) 011 [hep-ph/0511034] [INSPIRE].
  22. [22]
    J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys.13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Cox, C. Han and T.T. Yanagida, Muon g − 2 and dark matter in the minimal supersymmetric Standard Model, Phys. Rev.D 98 (2018) 055015 [arXiv:1805.02802] [INSPIRE].
  24. [24]
    K. Inoue, M. Kawasaki, M. Yamaguchi and T. Yanagida, Vanishing squark and slepton masses in a class of supergravity models, Phys. Rev.D 45 (1992) 328 [INSPIRE].
  25. [25]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev.D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].
  26. [26]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP01 (2000) 003 [hep-ph/9911323] [INSPIRE].
  27. [27]
    K. Harigaya, T.T. Yanagida and N. Yokozaki, Higgs boson mass of 125 GeV and g − 2 of the muon in a gaugino mediation model, Phys. Rev.D 91 (2015) 075010 [arXiv:1501.07447] [INSPIRE].
  28. [28]
    W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett.B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T.T. Yanagida, W. Yin and N. Yokozaki, Nambu-Goldstone boson hypothesis for squarks and sleptons in pure gravity mediation, JHEP09 (2016) 086 [arXiv:1608.06618] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T.T. Yanagida, W. Yin and N. Yokozaki, Flavor-safe light squarks in Higgs-anomaly mediation, JHEP04 (2018) 012 [arXiv:1801.05785] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys.B 557 (1999)79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Yanagida, Naturally light Higgs doublets in the supersymmetric grand unified theories with dynamical symmetry breaking, Phys. Lett.B 344 (1995) 211 [hep-ph/9409329] [INSPIRE].
  33. [33]
    T. Hotta, K.I. Izawa and T. Yanagida, Dynamical models for light Higgs doublets in supersymmetric grand unified theories, Phys. Rev.D 53 (1996) 3913 [hep-ph/9509201] [INSPIRE].
  34. [34]
    N. Arkani-Hamed, H.-C. Cheng and T. Moroi, Nonunified gaugino masses in supersymmetric missing partner models with hypercolor, Phys. Lett. B 387 (1996) 529 [hep-ph/9607463] [INSPIRE].
  35. [35]
    S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP09 (2013) 027 [arXiv:1303.5830] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Iwamoto, T.T. Yanagida and N. Yokozaki, CP-safe gravity mediation and muon g − 2, PTEP2015 (2015) 073B01 [arXiv:1407.4226] [INSPIRE].
  37. [37]
    K.I. Izawa, T. Kugo and T.T. Yanagida, Gravitational supersymmetry breaking, Prog. Theor. Phys.125 (2011) 261 [arXiv:1008.4641] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in supersymmetric theories, Phys. Rev.D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].
  39. [39]
    G. Degrassi and G.F. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev.D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].
  40. [40]
    S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev.D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].
  41. [41]
    M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the tbH +interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys.B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].
  42. [42]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({M}_Z^2\right) \): a new data-based analysis, Phys. Rev.D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
  44. [44]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun.185 (2014) 960 [arXiv:1305.0237] [INSPIRE].Google Scholar
  45. [45]
    H. Bahl and W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J.C 76 (2016) 499 [arXiv:1608.01880] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric Standard Model, Phys. Rev. Lett.112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].
  48. [48]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].
  49. [49]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of stau’s, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].
  50. [50]
    T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino slepton coannihilation, JHEP07 (2002) 024 [hep-ph/0206266] [INSPIRE].
  51. [51]
    M. Ibe, A. Kamada and S. Matsumoto, Mixed (cold+warm) dark matter in the bino-wino coannihilation scenario, Phys. Rev.D 89 (2014) 123506 [arXiv:1311.2162] [INSPIRE].
  52. [52]
    K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev.D 89 (2014)115021 [arXiv:1403.0715] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018)995 [arXiv:1803.02762] [INSPIRE].
  54. [54]
    CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].
  55. [55]
    ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s} \)= 13 TeV with the ATLAS detector, Phys. Rev.D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].
  56. [56]
    CMS collaboration, Search for new physics in the compressed mass spectra scenario using events with two soft opposite-sign leptons and missing transverse momentum at \( \sqrt{s} \) = 13 TeV, sCMS-PAS-SUS-16-025, CERN, Geneva, Switzerland(2016).
  57. [57]
    M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g−2, JHEP11 (2013)013 [arXiv:1309.3065] [INSPIRE].
  58. [58]
    M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric standard models: the case of the non-universal Higgs mass model, PTEP2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].
  59. [59]
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett.B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
  60. [60]
    ALEPH, DELPHI, L3 and OPAL Experiments collaboration, Combined LEP selectron/smuon/stau results, http://lepsusy.web.cern.ch/lepsusy/www/sleptons_summer04/slep_final.html, (2004).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Peter Cox
    • 1
  • Chengcheng Han
    • 1
    Email author
  • Tsutomu T. Yanagida
    • 1
    • 2
  • Norimi Yokozaki
    • 3
  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced StudyUniversity of TokyoKashiwaJapan
  2. 2.T.D. Lee Institute and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations