Renormalons in quantum mechanics

  • Cihan Pazarbası
  • Dieter Van den BleekenEmail author
Open Access
Regular Article - Theoretical Physics


We present a nonrelativistic one-particle quantum mechanics whose perturbative S-matrix exhibits a renormalon divergence that we explicitely compute. The potential of our model is the sum of the 2d Dirac δ-potential — known to require renormalization — and a 1d Dirac δ-potential tilted at an angle. We argue that renormalons are not specific to this example and exist for a much wider class of potentials. The ambiguity in the Borel summation of the perturbative series due to the renormalon pole is resolved by the physical condition of causality through careful consideration of the prescription. The suitably summed perturbative result coincides with the exact answer obtained through the operator formalism for scattering.


Renormalization Regularization and Renormalons Nonperturbative Effects Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Beneke, Renormalons, Phys. Rept.317 (1999) 1 [hep-ph/9807443] [INSPIRE].
  2. [2]
    M. Mariño and T. Reis, Resurgence for superconductors, arXiv:1905.09569 [INSPIRE].
  3. [3]
    M. Mariño and T. Reis, Exact perturbative results for the Lieb-Liniger and Gaudin-Yang models, arXiv:1905.09575 [INSPIRE].
  4. [4]
    J.C. Le Guillou and J. Zinn-Justin, Large order behavior of perturbation theory, North-Holland, Amsterdam The Netherlands (1990) [INSPIRE].
  5. [5]
    M. Mariño, Lectures on non-perturbative effects in large N gauge theories, matrix models and strings, Fortsch. Phys.62 (2014) 455 [arXiv:1206.6272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Aniceto, G. Basar and R. Schiappa, A Primer on Resurgent Transseries and Their Asymptotics, Phys. Rept.809 (2019) 1 [arXiv:1802.10441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    G.V. Dunne and M. Ünsal, What is QFT? Resurgent trans-series, Lefschetz thimbles and new exact saddles, PoS(LATTICE2015)010 (2016) [arXiv:1511.05977] [INSPIRE].
  8. [8]
    C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev.184 (1969) 1231 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E.B. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett.B 91 (1980) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Zinn-Justin, Multi-Instanton Contributions in Quantum Mechanics, Nucl. Phys.B 192 (1981) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.V. Dunne and M. Ünsal, Uniform WKB, Multi-instantons and Resurgent Trans-Series, Phys. Rev.D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A.A. Penin and A.A. Pivovarov, Numerical analysis of renormalon technique in quantum mechanics, Phys. Lett.B 401 (1997) 294 [hep-ph/9612204] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. David, On the Ambiguity of Composite Operators, IR Renormalons and the Status of the Operator Product Expansion, Nucl. Phys.B 234 (1984) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Wilson’s Operator Expansion: Can It Fail?, Nucl. Phys.B 249 (1985) 445 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Olesen, On Vacuum Instability in Quantum Field Theory, Phys. Lett.B 73 (1978) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev.85 (1952) 631 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field Theories, Phys. Rev.D 10 (1974) 3235 [INSPIRE].ADSGoogle Scholar
  18. [18]
    B.E. Lautrup, On High Order Estimates in QED, Phys. Lett.B 69 (1977) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    G. ’t Hooft, Can We Make Sense Out of “Quantum Chromodynamics”?, Subnucl. Ser.15 (1979) 943 [INSPIRE].
  20. [20]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys.113 (2002) 1 [INSPIRE].Google Scholar
  21. [21]
    M. Beneke and V.M. Braun, Renormalons and power corrections, hep-ph/0010208 [INSPIRE].
  22. [22]
    M. Shifman, New and Old about Renormalons: in Memoriam Kolya Uraltsev, Int. J. Mod. Phys.A 30 (2015) 1543001 [arXiv:1310.1966] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Jackiw, Diverse topics in theoretical and mathematical physics, World Scientific (1995).Google Scholar
  24. [24]
    A. Maiezza and J.C. Vasquez, Non-local Lagrangians from Renormalons and Analyzable Functions, Annals Phys.407 (2019) 78 [arXiv:1902.05847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L.N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical Theory, Sov. Phys. JETP45 (1977) 216 [INSPIRE].ADSGoogle Scholar
  26. [26]
    P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP08 (2012) 063 [arXiv:1206.1890] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett.109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G.V. Dunne and M. Ünsal, Resurgence and Trans-series in Quantum Field Theory: The ℂℙN−1Model, JHEP11 (2012) 170 [arXiv:1210.2423] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.V. Dunne and M. Ünsal, Continuity and Resurgence: towards a continuum definition of the ℂℙ(N − 1) model, Phys. Rev.D 87 (2013) 025015 [arXiv:1210.3646] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. Dabrowski and G.V. Dunne, Fractionalized Non-Self-Dual Solutions in the ℂℙN−1Model, Phys. Rev.D 88 (2013) 025020 [arXiv:1306.0921] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, Phys. Rev. Lett.112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.M. Anber and T. Sulejmanpasic, The renormalon diagram in gauge theories on3× 𝕊1, JHEP01 (2015) 139 [arXiv:1410.0121] [INSPIRE].
  33. [33]
    G.V. Dunne and M. Ünsal, Resurgence and Dynamics of O(N) and Grassmannian σ-models, JHEP09 (2015) 199 [arXiv:1505.07803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    T. Fujimori, S. Kamata, T. Misumi, M. Nitta and N. Sakai, Bion non-perturbative contributions versus infrared renormalons in two-dimensionalP N−1models, JHEP02 (2019) 190 [arXiv:1810.03768] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Gosdzinsky and R. Tarrach, Learning Quantum Field Theory From Elementary Quantum Mechanics, Am. J. Phys.59 (1991) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Manuel and R. Tarrach, Perturbative renormalization in quantum mechanics, Phys. Lett.B 328 (1994) 113 [hep-th/9309013] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag (1988).Google Scholar
  38. [38]
    J.R. Taylor, Scattering Theory: the Quantum Theory on Nonrelativistic collisions, R.E. Krieger Publishing Company (1972).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentBoğaziçi UniversityIstanbulTurkey
  2. 2.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium

Personalised recommendations