Advertisement

Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure

  • Carlos R. MafraEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generalization of a so far unnoticed property at tree-level; the correlators have the symmetry structure akin to Lie polynomials. One-loop correlators up to seven points are presented in a variety of representations manifesting different subsets of their defining properties. These expressions are related via identities obeyed by the kinematic superfields and worldsheet functions spelled out in the first two parts of this series and reflecting a duality between the two kinds of ingredients. Interestingly, the expression for the eight-point correlator following from our method seems to capture correctly all the dependence on the worldsheet punctures but leaves undetermined the coefficient of the holomorphic Eisenstein series G4. By virtue of chiral splitting, closed-string correlators follow from the double copy of the open-string results.

Keywords

Conformal Field Theory Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I. Pure spinors and superfield kinematics, JHEP08 (2019) 091 [arXiv:1812.10969] [INSPIRE].
  2. [2]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part II. Worldsheet functions and their duality to kinematics, JHEP08 (2019) 093 [arXiv:1812.10970] [INSPIRE].
  3. [3]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure, JHEP08 (2019) 094 [arXiv:1812.10971] [INSPIRE].
  4. [4]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    N. Berkovits, Explaining pure spinor superspace, hep-th/0612021 [INSPIRE].
  7. [7]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete n-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys.B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    R. Ree, Lie elements and an algebra associated with shuffles, Annals Math.68 (1958) 210.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Zfunctions: one-loop worldsheet functions webpage, http://repo.or.cz/Zfunctions.git.
  10. [10]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  11. [11]
    M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun.181 (2010) 1419 [hep-ph/0702279] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    C.R. Mafra and O. Schlotterer, Double-copy structure of one-loop open-string amplitudes, Phys. Rev. Lett.121 (2018) 011601 [arXiv:1711.09104] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge, U.K. (1987) [INSPIRE].
  15. [15]
    E.P. Verlinde and H.L. Verlinde, Chiral bosonization, determinants and the string partition function, Nucl. Phys.B 288 (1987) 357 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    E. D’Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    E. D’Hoker and D.H. Phong, Conformal scalar fields and chiral splitting on super-Riemann surfaces, Commun. Math. Phys.125 (1989) 469 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, U.K. (1993).Google Scholar
  20. [20]
    D.E. Knuth, Two notes on notation, Amer. Math. Monthly99 (1992) 403 [math.HO/9205211].
  21. [21]
    N. Berkovits, Cohomology in the pure spinor formalism for the superstring, JHEP09 (2000) 046 [hep-th/0006003] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    N. Berkovits and O. Chandía, Lorentz invariance of the pure spinor BRST cohomology for the superstring, Phys. Lett.B 514 (2001) 394 [hep-th/0105149] [INSPIRE].
  23. [23]
    C.R. Mafra, Pure spinor superspace identities for massless four-point kinematic factors, JHEP04 (2008) 093 [arXiv:0801.0580] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    M.B. Green and J.H. Schwarz, Supersymmetrical dual string theory. 3. Loops and renormalization, Nucl. Phys. B 198 (1982) 441 [INSPIRE].
  25. [25]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys.B 198 (1982) 474 [INSPIRE].ADSGoogle Scholar
  26. [26]
    C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure spinor superspace, arXiv:1408.3605 [INSPIRE].
  27. [27]
    A. Tsuchiya, More on one loop massless amplitudes of superstring theories, Phys. Rev.D 39 (1989) 1626 [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    S. Stieberger and T.R. Taylor, Non-Abelian Born-Infeld action and type I-heterotic duality 2: nonrenormalization theorems, Nucl. Phys.B 648 (2003) 3 [hep-th/0209064] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    D.M. Richards, The one-loop five-graviton amplitude and the effective action, JHEP10 (2008) 042 [arXiv:0807.2421] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    Z.-H. Lin, One loop closed string five particle fermion amplitudes in the covariant formulation, Int. J. Mod. Phys.A 5 (1990) 299 [INSPIRE].ADSGoogle Scholar
  31. [31]
    Z.H. Lin, L. Clavelli and S.T. Jones, Five point function in the covariant formulation of the type I superstring theory, Nucl. Phys.B 294 (1987) 83 [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.J. Atick and A. Sen, Covariant one loop fermion emission amplitudes in closed string theories, Nucl. Phys.B 293 (1987) 317 [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    C.R. Mafra and C. Stahn, The one-loop open superstring massless five-point amplitude with the non-minimal pure spinor formalism, JHEP03 (2009) 126 [arXiv:0902.1539] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys.B 271 (1986) 93 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    M.B. Green and J.H. Schwarz, The hexagon gauge anomaly in type I superstring theory, Nucl. Phys.B 255 (1985) 93 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett.B 149 (1984) 117 [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSzbMATHGoogle Scholar
  40. [40]
    L. Clavelli, P.H. Cox and B. Harms, Parity violating one loop six point function in type I superstring theory, Phys. Rev.D 35 (1987) 1908 [INSPIRE].ADSGoogle Scholar
  41. [41]
    M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP10 (2013) 188 [arXiv:1307.3534] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys.B 498 (1997) 195 [hep-th/9701093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four loop β-function for the N = 1 and N = 2 supersymmetric nonlinear σ-model in two-dimensions, Phys. Lett.B 173 (1986) 423 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    M.T. Grisaru and D. Zanon, σ model superstring corrections to the Einstein-Hilbert action, Phys. Lett.B 177 (1986) 347 [INSPIRE].
  45. [45]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type II superstring theory, JHEP02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one type II superstring low energy expansion, JHEP08 (2015) 041 [arXiv:1502.06698] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys.61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    H. Gomez, C.R. Mafra and O. Schlotterer, Two-loop superstring five-point amplitude and S-duality, Phys. Rev.D 93 (2016) 045030 [arXiv:1504.02759] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory, Phys. Rev.D 92 (2015) 066001 [arXiv:1501.05562] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    A.G. Tsuchiya, On new theta identities of fermion correlation functions on genus g Riemann surfaces, arXiv:1710.00206 [INSPIRE].
  53. [53]
    A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, R 2corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys.B 510 (1998) 423 [hep-th/9708062] [INSPIRE].ADSzbMATHGoogle Scholar
  54. [54]
    M. Berg, I. Buchberger and O. Schlotterer, From maximal to minimal supersymmetry in string loop amplitudes, JHEP04 (2017) 163 [arXiv:1603.05262] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett.115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSzbMATHGoogle Scholar
  57. [57]
    S. He, O. Schlotterer and Y. Zhang, New BCJ representations for one-loop amplitudes in gauge theories and gravity, Nucl. Phys.B 930 (2018) 328 [arXiv:1706.00640] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    Y. Geyer and R. Monteiro, Gluons and gravitons at one loop from ambitwistor strings, JHEP03 (2018) 068 [arXiv:1711.09923] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-loop scattering amplitudes from the Riemann sphere, Phys. Rev.D 94 (2016) 125029 [arXiv:1607.08887] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    Y. Geyer and R. Monteiro, Two-loop scattering amplitudes from ambitwistor strings: from genus two to the nodal Riemann sphere, JHEP11 (2018) 008 [arXiv:1805.05344] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, JHEP06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Semi-Abelian Z-theory: NLSM+φ 3from the open string, JHEP08 (2017) 135 [arXiv:1612.06446] [INSPIRE].ADSzbMATHGoogle Scholar
  64. [64]
    C.R. Mafra and O. Schlotterer, Non-Abelian Z-theory: Berends-Giele recursion for the α′-expansion of disk integrals, JHEP01 (2017) 031 [arXiv:1609.07078] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    R. Graham, D.E. Knuth and O. Patashnik, Concrete mathematics: a foundation for computer science, Addison-Wesley Longman Publishing Co. Inc., Boston, MA, U.S.A. (1994).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonU.K.
  2. 2.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations