Advertisement

Towards the n-point one-loop superstring amplitude. Part II. Worldsheet functions and their duality to kinematics

  • Carlos R. MafraEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

This is the second installment of a series of three papers in which we describe a method to determine higher-point correlation functions in one-loop open-superstring amplitudes from first principles. In this second part, we study worldsheet functions defined on a genus-one surface built from the coefficient functions of the Kronecker-Einsenstein series. We construct two classes of worldsheet functions whose properties lead to several simplifying features within our description of one-loop correlators with the pure-spinor formalism. The first class is described by functions with prescribed monodromies, whose characteristic shuffle-symmetry property leads to a Lie-polynomial structure when multiplied by the local superfields from part I of this series. The second class is given by so-called generalized elliptic integrands (GEIs) that are constructed using the same combinatorial patterns of the BRST pseudo-invariant superfields from part I. Both of them lead to compact and combinatorially rich expressions for the correlators in part III. The identities obeyed by the two classes of worldsheet functions exhibit striking parallels with those of the superfield kinematics. We will refer to this phenomenon as a duality between worldsheet functions and kinematics.

Keywords

Conformal Field Theory Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I. Pure spinors and superfield kinematics, JHEP08 (2019) 090 [arXiv:1812.10969] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part II. Worldsheet functions and their duality to kinematics, JHEP08 (2019) 092 [arXiv:1812.10970] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure, JHEP08 (2019) 093 [arXiv:1812.10971] [INSPIRE].zbMATHGoogle Scholar
  4. [4]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    C.R. Mafra and O. Schlotterer, Double-copy structure of one-loop open-string amplitudes, Phys. Rev. Lett.121 (2018) 011601 [arXiv:1711.09104] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
  8. [8]
    L. Kronecker, Zur Theorie der elliptischen Funktionen (in German), Math. Werke4 (1881) 313.zbMATHGoogle Scholar
  9. [9]
    D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math.104 (1991) 449.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E.P. Verlinde and H.L. Verlinde, Chiral bosonization, determinants and the string partition function, Nucl. Phys.B 288 (1987) 357 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. D’Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. D’Hoker and D.H. Phong, Conformal scalar fields and chiral splitting on super-Riemann surfaces, Commun. Math. Phys.125 (1989) 469 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge, U.K. (1987) [INSPIRE].zbMATHGoogle Scholar
  14. [14]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE].zbMATHGoogle Scholar
  15. [15]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T.R. Taylor, Aspects of type I-type II-heterotic triality in four-dimensions, Nucl. Phys.B 489 (1997) 160 [hep-th/9608012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Tsuchiya, More on one loop massless amplitudes of superstring theories, Phys. Rev. D39 (1989) 1626 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Mumford, Tata lectures on theta I, Birkhäuser, Boston, MA, U.S.A. (1983).Google Scholar
  19. [19]
    D. Mumford, Tata lectures on theta II, Birkhäuser, Boston, MA, U.S.A. (1984).Google Scholar
  20. [20]
    M.B. Green and J.H. Schwarz, The hexagon gauge anomaly in type I superstring theory, Nucl. Phys.B 255 (1985) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett.B 149 (1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys.B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Berkovits, Explaining pure spinor superspace, hep-th/0612021 [INSPIRE].
  24. [24]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete n-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys.B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, U.K. (1997).CrossRefGoogle Scholar
  26. [26]
    C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, U.K. (1993).Google Scholar
  27. [27]
    J. Cresson, Calcul moulien, Ann. Fac. Sci. Toulouse Math.18 (2009) 307 [math.DS/0509548].MathSciNetCrossRefGoogle Scholar
  28. [28]
    C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure spinor superspace, arXiv:1408.3605 [INSPIRE].
  29. [29]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP01 (2011) 001 [arXiv:1010.3933] [INSPIRE].
  31. [31]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys.B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Dolan and P. Goddard, Current algebra on the torus, Commun. Math. Phys.285 (2009) 219 [arXiv:0710.3743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A.G. Tsuchiya, On the pole structures of the disconnected part of hyper elliptic g loop M point super string amplitudes, arXiv:1209.6117 [INSPIRE].
  34. [34]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSzbMATHGoogle Scholar
  35. [35]
    D.M. Richards, The one-loop five-graviton amplitude and the effective action, JHEP10 (2008) 042 [arXiv:0807.2421] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP10 (2013) 188 [arXiv:1307.3534] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  38. [38]
    M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
  39. [39]
    Zfunctions: one-loop worldsheet functions webpage, http://repo.or.cz/Zfunctions.git.
  40. [40]
    E. Kiritsis, Introduction to superstring theory, in Leuven notes in mathematical and theoretical physics, volume B9, Leuven U. Press, Leuven, Belgium (1998) [hep-th/9709062] [INSPIRE].Google Scholar
  41. [41]
    A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer, Berlin Heidelberg, Germany (1976).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonU.K.
  2. 2.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations