Swampland distance conjecture for one-parameter Calabi-Yau threefolds

  • Abhinav JoshiEmail author
  • Albrecht Klemm
Open Access
Regular Article - Theoretical Physics


We investigate the swampland distance conjecture (SDC) in the complex moduli space of type II compactifications on one-parameter Calabi-Yau threefolds. This class of manifolds contains hundreds of examples and, in particular, a subset of 14 geometries with hypergeometric differential Picard-Fuchs operators. Of the four principal types of singularities that can occur — specified by their limiting mixed Hodge structure — only the K-points and the large radius points (or more generally the M -points) are at infinite distance and therefore of interest to the SDC. We argue that the conjecture is fulfilled at the K- and the M -points, including models with several M -points, using explicit calculations in hypergeometric models which contain typical examples of all these degenerations. Together with previous work on the large radius points, this suggests that the SDC is indeed fulfilled for one-parameter Calabi-Yau spaces.


Compactification and String Models D-branes Superstring Vacua Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D. van Straten, Calabi-Yau operators, in Uniformization, Riemann-Hilbert correspondence, Calabi-Yau manifolds & Picard-Fuchs equations, L. Ji et al. eds., Advanced Lecture in Mathematics volume 42, Int. Press, Somerville, U.S.A. (2018).Google Scholar
  4. [4]
    G. Almkvist and D. von Straten, Calabi-Yau differential operator database v.3.Google Scholar
  5. [5]
    T.W. Grimm, C. Li and E. Palti, Infinite distance networks in field space and charge orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, Nucl. Phys. Proc. Suppl.58 (1997) 177 [hep-th/9607139] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Klemm et al., Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys.B 477 (1996) 746 [hep-th/9604034] [INSPIRE].
  9. [9]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  10. [10]
    M.X. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Lect. Notes Phys.757 (2009) 45 [hep-th/0612125] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    P. Corvilain, T.W. Grimm and I. Valenzuela, The swampland distance conjecture for Kähler moduli, arXiv:1812.07548 [INSPIRE].
  12. [12]
    R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The refined swampland distance conjecture in Calabi-Yau moduli spaces, JHEP06 (2018) 052 [arXiv:1803.04989] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Candelas and X.C. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys.B 355 (1991) 455.ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    C. F. Doran and J. W. Morgan, Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi-Yau threefolds, in Mirror symmetry V, N. Yui et al eds., AMS/IP Studies in Advanced Mathematics volume 38, American Mathematical Society, U.S.A. (2006).Google Scholar
  17. [17]
    D.R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, in Essays on mirror manifolds, S.T. Yau ed., Int. Press, Somerville, U.S.A. (1992).Google Scholar
  18. [18]
    A. Klemm and S. Theisen, Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps, Nucl. Phys.B 389 (1993) 153 [hep-th/9205041] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Font, Periods and duality symmetries in Calabi-Yau compactifications, Nucl. Phys.B 391 (1993) 358 [hep-th/9203084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Libgober and J. Teitelbaum, Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations, Int. Math. Res. Not.1 (1993) 29.MathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Klemm and S. Theisen, Mirror maps and instanton sums for complete intersections in weighted projective space, Mod. Phys. Lett.A 9 (1994) 1807 [hep-th/9304034] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs volume 68, American Mathematical Society, U.S.A. (1999).Google Scholar
  23. [23]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys.B 433 (1995) 501 [hep-th/9406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math.22 (1973) 211.ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C.L. Wang, On the incompleteness of the weil-petersson metric along degenerations of calabi-yau manifolds, Math. Res. Lett.4 (1997) 157.ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    B. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys.B 338 (1990) 15.ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Libgober and J. Teitelbaum, Lines on Calabi-Yau complete intersections, mirror symmetry and Picard-Fuchs equations, alg-geom/9301001 [INSPIRE]
  28. [28]
    P. Berglund et al., Periods for Calabi-Yau and Landau-Ginzburg vacua, Nucl. Phys.B 419 (1994) 352.ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Klemm, E. Scheidegger and D. Zagier, Periods and quasiperiods of modular forms and d-brane masses for the mirror quintic, in preparation.Google Scholar
  30. [30]
    I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys.B 413 (1994) 162 [hep-th/9307158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].
  32. [32]
    S.H. Katz, A. Klemm and C. Vafa, M theory, topological strings and spinning black holes, Adv. Theor. Math. Phys.3 (1999) 1445 [hep-th/9910181] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Pandharipande and R.P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc.23 (2010) 267.MathSciNetCrossRefGoogle Scholar
  34. [34]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys.B 451 (1995) 96 [hep-th/9504090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M.-x. Huang, A. Klemm, M. Mariño and A. Tavanfar, Black holes and large order quantum geometry, Phys. Rev.D 79 (2009) 066001 [arXiv:0704.2440] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    C. Vafa, A stringy test of the fate of the conifold, Nucl. Phys.B 447 (1995) 252 [hep-th/9505023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B.R. Greene, String theory on Calabi-Yau manifolds, in the proceedings of Fields, strings and duality. Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI’96), June 2-28, Boulder, U.S.A. (1996), hep-th/9702155 [INSPIRE].
  38. [38]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys.B 359 (1991) 21 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys.B 444 (1995) 92 [hep-th/9502072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    C.S. Meijer, Über Whittakersche bzw. Besselsche Funktionen und deren Produkte, Nieuw Arch. Wiskd. II. Ser.18 (1936) 10.zbMATHGoogle Scholar
  41. [41]
    R. Beals and J. Szmigielski, Meijer g-functions: a gentle introduction, Not. AMS60 (2013) 866.MathSciNetzbMATHGoogle Scholar
  42. [42]
    H. Bateman, Higher transcendental functions. Volume I, McGraw-Hill, U.S.A. (1953).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Bethe Center for Theoretical PhysicsUniversity of BonnBonnGermany
  2. 2.Hausdorff Center for MathematicsUniversity of BonnBonnGermany

Personalised recommendations