An algebraic classification of exceptional EFTs

  • Diederik Roest
  • David StefanyszynEmail author
  • Pelle Werkman
Open Access
Regular Article - Theoretical Physics


We classify four-dimensional effective field theories (EFTs) with enhanced soft limits, which arise due to non-linearly realised symmetries on the Goldstone modes of such theories. We present an algorithm for deriving all possible algebras that can be non-linearly realised on a set of Goldstone modes with canonical propagators, linearly realised Poincaré symmetries and interactions at weak coupling. An important ingredient in our analysis is inverse Higgs trees which systematically incorporate the requirements for the existence of inverse Higgs constraints. These are the algebraic cousin of the on-shell soft data one provides for soft bootstrapping EFTs. We perform full classifications for single scalar and multiple spin-1/2 fermion EFTs and present a thorough analysis for multiple scalars. In each case there are only a small number of algebras consistent with field-dependent transformation rules, leading to the class of exceptional EFTs including the scalar sector of Dirac-Born-Infeld, Special Galileon and Volkov-Akulov theories. We also discuss the coupling of a U(1) gauge vector to the exceptional scalar theories, showing that there is a Special Galileon version of the full Dirac-Born-Infeld theory. This paper is part I in a series of two papers, with the second providing an algebraic classification of supersymmetric theories with non-linearly realised symmetries.


Effective Field Theories Global Symmetries Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
  2. [2]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Cheung et al., A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].
  6. [6]
    A. Padilla, D. Stefanyszyn and T. Wilson, Probing scalar effective field theories with the soft limits of scattering amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    C. Cheung et al., On-shell recursion relations for effective field theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft bootstrap and supersymmetry, JHEP 01 (2019) 195 [arXiv:1806.06079] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M.P. Bogers and T. Brauner, Geometry of multiflavor Galileon-like theories, Phys. Rev. Lett. 121 (2018) 171602 [arXiv:1802.08107] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Klein, E. Malek, D. Roest and D. Stefanyszyn, No-go theorem for a gauge vector as a spacetime Goldstone mode, Phys. Rev. D 98 (2018) 065001 [arXiv:1806.06862] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    C.P. Burgess and M. Williams, Who you gonna call? Runaway ghosts, higher derivatives and time-dependence in EFTs, JHEP 08 (2014) 074 [arXiv:1404.2236] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934)425 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    P.A.M. Dirac, An extensible model of the electron, Proc. Roy. Soc. Lond. A 268 (1962) 57 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Carrillo González, R. Penco and M. Trodden, Radiation of scalar modes and the classical double copy, JHEP 11 (2018) 065 [arXiv:1809.04611] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Z. Yin, The infrared structure of exceptional scalar theories, JHEP 03 (2019) 158 [arXiv:1810.07186] [INSPIRE].
  22. [22]
    A.L. Guerrieri, Y.-t. Huang, Z. Li and C. Wen, On the exactness of soft theorems, JHEP 12 (2017) 052 [arXiv:1705.10078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R.H. Boels and W. Wormsbecher, Spontaneously broken conformal invariance in observables, arXiv:1507.08162 [INSPIRE].
  24. [24]
    P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev. D 93 (2016) 085015 [arXiv:1512.03316] [INSPIRE].
  25. [25]
    M. Bianchi et al., Exploring soft constraints on effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P.J. Olver, Applications of Lie groups to differential equations, Springer, Germany (1986).CrossRefzbMATHGoogle Scholar
  27. [27]
    J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Shift symmetries in (Anti) de Sitter space, JHEP 02 (2019) 178 [arXiv:1812.08167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
  31. [31]
    E. Pajer and D. Stefanyszyn, Symmetric superfluids, JHEP 06 (2019) 008 [arXiv:1812.05133] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  33. [33]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.V. Volkov, Phenomenological lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].
  35. [35]
    E.A. Ivanov and V.I. Ogievetsky, The inverse Higgs phenomenon in nonlinear realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].
  36. [36]
    S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev. D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].
  37. [37]
    K. Hinterbichler and A. Joyce, Goldstones with extended shift symmetries, Int. J. Mod. Phys. D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Kaloper, A. Padilla, P. Saffin and D. Stefanyszyn, Unitarity and the Vainshtein mechanism, Phys. Rev. D 91 (2015) 045017 [arXiv:1409.3243] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].
  41. [41]
    D. Roest, P. Werkman and Y. Yamada, Internal supersymmetry and small-field Goldstini, JHEP 05 (2018) 190 [arXiv:1710.02480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109.ADSCrossRefGoogle Scholar
  43. [43]
    E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Kallosh, A. Karlsson and D. Murli, Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory, JHEP 03 (2017) 081 [arXiv:1609.09127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    W.-M. Chen, Y.-t. Huang and C. Wen, New fermionic soft theorems for supergravity amplitudes, Phys. Rev. Lett. 115 (2015) 021603 [arXiv:1412.1809] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP 11 (2017) 020 [arXiv:1706.03070] [INSPIRE].
  49. [49]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
  50. [50]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Roest, D. Stefanyszyn and P. Werkman, An algebraic classification of exceptional EFTs. Part II: supersymmetry, arXiv:1905.05872 [INSPIRE].
  52. [52]
    R. Klein, D. Roest and D. Stefanyszyn, Spontaneously broken spacetime symmetries and the role of inessential Goldstones, JHEP 10 (2017) 051 [arXiv:1709.03525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    I.N. McArthur, Nonlinear realizations of symmetries and unphysical Goldstone bosons, JHEP 11 (2010) 140 [arXiv:1009.3696] [INSPIRE].
  54. [54]
    P. Creminelli, M. Serone and E. Trincherini, Non-linear representations of the conformal group and mapping of Galileons, JHEP 10 (2013) 040 [arXiv:1306.2946] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11 (2013)198 [arXiv:1311.0472] [INSPIRE].
  56. [56]
    R. Klein, D. Roest and D. Stefanyszyn, Symmetry breaking patterns for inflation, JHEP 06 (2018) 006 [arXiv:1712.05760] [INSPIRE].
  57. [57]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].
  58. [58]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [INSPIRE].
  59. [59]
    C. Deffayet, A.E. Gümrükçüoğlu, S. Mukohyama and Y. Wang, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP 04 (2014) 082 [arXiv:1312.6690] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    F. Gliozzi, Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios, Phys. Rev. D 84 (2011) 027702 [arXiv:1103.5377] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Casalbuoni, J. Gomis and K. Kamimura, Space-time transformations of the Born-Infeld gauge field of a D-brane, Phys. Rev. D 84 (2011) 027901 [arXiv:1104.4916] [INSPIRE].ADSGoogle Scholar
  62. [62]
    C. De Rham, K. Hinterbichler and L.A. Johnson, On the (A) dS decoupling limits of massive gravity, JHEP 09 (2018) 154 [arXiv:1807.08754] [INSPIRE].
  63. [63]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  64. [64]
    A. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006)014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with spin, JHEP 03 (2018) 011 [arXiv:1706.02712] [INSPIRE].
  66. [66]
    B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Diederik Roest
    • 1
  • David Stefanyszyn
    • 1
    Email author
  • Pelle Werkman
    • 1
  1. 1.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands

Personalised recommendations