Note about T-duality of non-relativistic string

  • J. KlusoňEmail author
Open Access
Regular Article - Theoretical Physics


In this note we perform canonical analysis of T-duality for non-relativistic string in stringy Newton-Cartan background. We confirm recent result that T-duality along longitudinal spatial direction of stringy Newton-Cartan geometry maps non-relativistic string to the relativistic string that propagates on the background with light-like isometry.


Bosonic Strings String Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic string theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].
  2. [2]
    T. Harmark et al., Strings with non-relativistic conformal symmetry and limits of the AdS/CFT correspondence, JHEP 11 (2018) 190 [arXiv:1810.05560] [INSPIRE].
  3. [3]
    T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev. D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].
  8. [8]
    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Sen, D0-branes on T n and matrix theory, Adv. Theor. Math. Phys. 2 (1998) 51 [hep-th/9709220] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, A canonical approach to duality transformations, Phys. Lett. B 336 (1994) 183 [hep-th/9406206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, An introduction to T duality in string theory, Nucl. Phys. Proc. Suppl. 41 (1995) 1 [hep-th/9410237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Klusoň, Nonrelativistic string theory σ-model and its canonical formulation, Eur. Phys. J. C 79 (2019) 108 [arXiv:1809.10411] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Klusoň, Hamiltonian for a string in a Newton-Cartan background, Phys. Rev. D 98 (2018) 086010 [arXiv:1801.10376] [INSPIRE].
  15. [15]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations