Advertisement

Black hole chemistry and holography in generalized quasi-topological gravity

  • Mozhgan Mir
  • Robie A. HennigarEmail author
  • Jamil Ahmed
  • Robert B. Mann
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We investigate the thermodynamics of AdS black holes in Generalized Quasi-topological Gravity with and without electric charge, concentrating on the version of the theory that is cubic in curvature. We study new aspects of Hawking-Page transitions that occur for these black holes. Working within the framework of black hole chemistry, we find a variety of familiar and new critical behaviour and phase transitions in four and higher dimensions for the charged black holes. We also consider some holographic aspects of our work, demonstrating how the ratio of viscosity to entropy is modified by inclusion of these cubic curvature terms.

Keywords

Black Holes Classical Theories of Gravity AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Weyl, Allgemeine relativitätstheorie, in Raum Zeit Materie, H. Weil ed., Springer, Germany (1923).Google Scholar
  3. [3]
    R. Carmichael et al., As Eddington, the mathematical theory of relativity, Bull. Am. Math. Soc. 31 (1925) 563.CrossRefGoogle Scholar
  4. [4]
    K.S. Stelle, Classical gravity with higher derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. 156B (1985) 315 [INSPIRE].
  6. [6]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CF T 6, Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].
  9. [9]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].
  13. [13]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].
  15. [15]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].
  16. [16]
    M. Mir, On holographic Weyl anomaly, JHEP 10 (2013) 084 [arXiv:1307.5514] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Bueno, P.A. Cano and A. Ruipérez, Holographic studies of Einsteinian cubic gravity, JHEP 03 (2018) 150 [arXiv:1802.00018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    P.A. Cano, R.A. Hennigar and H. Marrochio, Complexity growth rate in lovelock gravity, Phys. Rev. Lett. 121 (2018) 121602 [arXiv:1803.02795] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T.P. Sotiriou and V. Faraoni, f (r) theories of gravity, Rev. Mod. Phys. 82 (2010) 451.Google Scholar
  25. [25]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1.ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: black hole, Birkhoff ’s theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M.H. Dehghani and M.H. Vahidinia, Quartic quasi-topological gravity, black holes and holography, JHEP 10 (2013) 210 [arXiv:1307.0330] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Cisterna, L. Guajardo, M. Hassaine and J. Oliva, Quintic quasi-topological gravity, JHEP 04 (2017) 066 [arXiv:1702.04676] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    P. Bueno and P.A. Cano, Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 104005 [arXiv:1607.06463] [INSPIRE].Google Scholar
  32. [32]
    P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev. D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    R.A. Hennigar and R.B. Mann, Black holes in einsteinian cubic gravity, Phys. Rev. D 95 (2017) 064055.ADSMathSciNetGoogle Scholar
  34. [34]
    P. Bueno and P.A. Cano, Four-dimensional black holes in Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 124051 [arXiv:1610.08019] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Generalized quasitopological gravity, Phys. Rev. D 95 (2017) 104042 [arXiv:1703.01631] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    P. Bueno and P.A. Cano, On black holes in higher-derivative gravities, Class. Quant. Grav. 34 (2017) 175008 [arXiv:1703.04625] [INSPIRE].
  37. [37]
    J. Ahmed, R.A. Hennigar, R.B. Mann and M. Mir, Quintessential quartic quasi-topological quartet, JHEP 05 (2017) 134 [arXiv:1703.11007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R.A. Hennigar, Criticality for charged black branes, JHEP 09 (2017) 082 [arXiv:1705.07094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    P. Bueno, P.A. Cano, R.A. Hennigar and R.B. Mann, NUTs and bolts beyond Lovelock, JHEP 10 (2018) 095 [arXiv:1808.01671] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P. Bueno, P.A. Cano, R.A. Hennigar and R.B. Mann, Universality of squashed-sphere partition functions, Phys. Rev. Lett. 122 (2019) 071602 [arXiv:1808.02052] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Y.-Z. Li, H.-S. Liu and H. Lü, Quasi-topological Ricci polynomial gravities, JHEP 02 (2018) 166 [arXiv:1708.07198] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    Y.-Z. Li, H. Lü and J.-B. Wu, Causality and a-theorem constraints on Ricci polynomial and Riemann cubic gravities, Phys. Rev. D 97 (2018) 024023 [arXiv:1711.03650] [INSPIRE].
  43. [43]
    A. Colléaux, S. Chinaglia and S. Zerbini, Nonpolynomial Lagrangian approach to regular black holes, Int. J. Mod. Phys. D 27 (2018) 1830002 [arXiv:1712.03730] [INSPIRE].
  44. [44]
    Y.-Z. Li, H. Lü and Z.-F. Mai, Universal structure of covariant holographic two-point functions in massless higher-order gravities, JHEP 10 (2018) 063 [arXiv:1808.00494] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    R. Carballo-Rubio, F. Di Filippo and N. Moynihan, Taming higher-derivative interactions and bootstrapping gravity with soft theorems, arXiv:1811.08192 [INSPIRE].
  46. [46]
    Y.-Z. Li, Holographic studies of the generic massless cubic gravities, Phys. Rev. D 99 (2019) 066014 [arXiv:1901.03349] [INSPIRE].
  47. [47]
    P. Bueno and P.A. Cano, Universal black hole stability in four dimensions, Phys. Rev. D 96 (2017) 024034 [arXiv:1704.02967] [INSPIRE].
  48. [48]
    R.A. Hennigar, M.B.J. Poshteh and R.B. Mann, Shadows, signals and stability in Einsteinian cubic gravity, Phys. Rev. D 97 (2018) 064041 [arXiv:1801.03223] [INSPIRE].
  49. [49]
    M.B.J. Poshteh and R.B. Mann, Gravitational lensing by black holes in Einsteinian cubic gravity, Phys. Rev. D 99 (2019) 024035 [arXiv:1810.10657] [INSPIRE].
  50. [50]
    G. Arciniega, J.D. Edelstein and L.G. Jaime, Towards purely geometric inflation and late time acceleration, arXiv:1810.08166 [INSPIRE].
  51. [51]
    A. Cisterna, N. Grandi and J. Oliva, On four-dimensional Einsteinian gravity, quasitopological gravity, cosmology and black holes, arXiv:1811.06523 [INSPIRE].
  52. [52]
    G. Arciniega et al., Geometric Inflation, arXiv:1812.11187 [INSPIRE].
  53. [53]
    M. Henneaux and C. Teitelboim, Asymptotically Anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    J.D.E. Creighton and R.B. Mann, Quasilocal thermodynamics of dilaton gravity coupled to gauge fields, Phys. Rev. D 52 (1995) 4569 [gr-qc/9505007] [INSPIRE].
  55. [55]
    D. Kastor, S. Ray and J. Traschen, Smarr formula and an extended first law for Lovelock gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    N. Altamirano, D. Kubizňák, R.B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav. 31 (2014) 042001 [arXiv:1308.2672] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    N. Altamirano, D. Kubiznak and R.B. Mann, Reentrant phase transitions in rotating Anti-de Sitter black holes, Phys. Rev. D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].
  59. [59]
    T. Narayanan and A. Kumar, Reentrant phase transitions in multicomponent liquid mixtures, Phys. Rept. 249 (1994) 135.ADSCrossRefGoogle Scholar
  60. [60]
    C. Hudson, The mutual solubility of nicotine in water, Z. Phys. Chem. 47 (1904) 113.Google Scholar
  61. [61]
    B.P. Dolan, A. Kostouki, D. Kubiznak and R.B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav. 31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].
  62. [62]
    D. Gundermann et al., Predicting the density-scaling exponent of a glass-forming liquid from prigogine-defay ratio measurements, Nature Phys. 7 (2011) 816.ADSCrossRefGoogle Scholar
  63. [63]
    R.A. Hennigar, R.B. Mann and E. Tjoa, Superfluid black holes, Phys. Rev. Lett. 118 (2017) 021301 [arXiv:1609.02564] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R.A. Hennigar, E. Tjoa and R.B. Mann, Thermodynamics of hairy black holes in Lovelock gravity, JHEP 02 (2017) 070 [arXiv:1612.06852] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    H. Dykaar, R.A. Hennigar and R.B. Mann, Hairy black holes in cubic quasi-topological gravity, JHEP 05 (2017) 045 [arXiv:1703.01633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    D.M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67 (1995) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013) 044014 [arXiv:1209.1707] [INSPIRE].ADSGoogle Scholar
  68. [68]
    R.-G. Cai, L.-M. Cao, L. Li and R.-Q. Yang, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP 09 (2013) 005 [arXiv:1306.6233] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W. Xu, H. Xu and L. Zhao, Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C 74 (2014) 2970 [arXiv:1311.3053] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.-X. Mo and W.-B. Liu, P − V criticality of topological black holes in Lovelock-Born-Infeld gravity, Eur. Phys. J. C 74 (2014) 2836 [arXiv:1401.0785] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.-W. Wei and Y.-X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90 (2014) 044057 [arXiv:1402.2837] [INSPIRE].ADSGoogle Scholar
  72. [72]
    J.-X. Mo and W.-B. Liu, Ehrenfest scheme for P − V criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes, Phys. Rev. D 89 (2014) 084057 [arXiv:1404.3872] [INSPIRE].
  73. [73]
    D.-C. Zou, S.-J. Zhang and B. Wang, Critical behavior of Born-Infeld AdS black holes in the extended phase space thermodynamics, Phys. Rev. D 89 (2014) 044002 [arXiv:1311.7299] [INSPIRE].
  74. [74]
    A. Belhaj, M. Chabab, H. EL Moumni, K. Masmar and M.B. Sedra, Ehrenfest scheme of higher dimensional AdS black holes in the third-order Lovelock-Born-Infeld gravity, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1550115 [arXiv:1405.3306] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    W. Xu and L. Zhao, Critical phenomena of static charged AdS black holes in conformal gravity, Phys. Lett. B 736 (2014) 214 [arXiv:1405.7665] [INSPIRE].
  76. [76]
    A.M. Frassino, D. Kubiznak, R.B. Mann and F. Simovic, Multiple reentrant phase transitions and triple points in Lovelock thermodynamics, JHEP 09 (2014) 080 [arXiv:1406.7015] [INSPIRE].
  77. [77]
    Z. Sherkatghanad, B. Mirza, Z. Mirzaiyan and S.A. Hosseini Mansoori, Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces, Int. J. Mod. Phys. D 26 (2016) 1750017 [arXiv:1412.5028] [INSPIRE].
  78. [78]
    S.H. Hendi and R. Naderi, Geometrothermodynamics of black holes in Lovelock gravity with a nonlinear electrodynamics, Phys. Rev. D 91 (2015) 024007 [arXiv:1510.06269] [INSPIRE].ADSMathSciNetGoogle Scholar
  79. [79]
    S.H. Hendi, S. Panahiyan and M. Momennia, Extended phase space of AdS black holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics, Int. J. Mod. Phys. D 25 (2016) 1650063 [arXiv:1503.03340] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    R.A. Hennigar, W.G. Brenna and R.B. Mann, P -v criticality in quasitopological gravity, JHEP 07 (2015) 077 [arXiv:1505.05517] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    S.H. Hendi and A. Dehghani, Thermodynamics of third-order Lovelock-AdS black holes in the presence of Born-Infeld type nonlinear electrodynamics, Phys. Rev. D 91 (2015) 064045 [arXiv:1510.06261] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    Z.-Y. Nie and H. Zeng, P-T phase diagram of a holographic s+p model from Gauss-Bonnet gravity, JHEP 10 (2015) 047 [arXiv:1505.02289] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    S.H. Hendi, S. Panahiyan and B. Eslam Panah, Charged black hole solutions in Gauss-Bonnet-massive gravity, JHEP 01 (2016) 129 [arXiv:1507.06563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S.H. Hendi, S. Panahiyan and B. Eslam Panah, Extended phase space of black holes in Lovelock gravity with nonlinear electrodynamics, PTEP 2015 (2015) 103E01 [arXiv:1511.00656] [INSPIRE].
  85. [85]
    S. He, L.-F. Li and X.-X. Zeng, Holographic van der Waals-like phase transition in the Gauss-Bonnet gravity, Nucl. Phys. B 915 (2017) 243 [arXiv:1608.04208] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  87. [87]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Entropy inequality violations from ultraspinning black holes, Phys. Rev. Lett. 115 (2015) 031101 [arXiv:1411.4309] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    C.V. Johnson, Holographic heat engines, Class. Quant. Grav. 31 (2014) 205002 [arXiv:1404.5982] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  89. [89]
    A. Karch and B. Robinson, Holographic Black Hole Chemistry, JHEP 12 (2015) 073 [arXiv:1510.02472] [INSPIRE].
  90. [90]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    B.P. Dolan, Pressure and compressibility of conformal field theories from the AdS/CFT correspondence, Entropy 18 (2016) 169 [arXiv:1603.06279] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Sinamuli and R.B. Mann, Higher order corrections to holographic black hole chemistry, Phys. Rev. D 96 (2017) 086008 [arXiv:1706.04259] [INSPIRE].
  93. [93]
    Z.-H. Li, Y.-C. Fu and Z.-Y. Nie, Competing s-wave orders from Einstein-Gauss-Bonnet gravity, Phys. Lett. B 776 (2018) 115 [arXiv:1706.07893] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    A. Dehyadegari, B.R. Majhi, A. Sheykhi and A. Montakhab, Universality class of alternative phase space and Van der Waals criticality, Phys. Lett. B 791 (2019) 30 [arXiv:1811.12308] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  95. [95]
    S.H. Hendi and A. Dehghani, Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive gravity, Eur. Phys. J. C 79 (2019) 227 [arXiv:1811.01018] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav. 34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    M. Mir and R.B. Mann, On generalized quasi-topological cubic-quartic gravity: thermodynamics and holography, JHEP 07 (2019) 012 [arXiv:1902.10906] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    X.-H. Feng, H. Huang, Z.-F. Mai and H. Lü, Bounce universe and black holes from critical Einsteinian cubic gravity, Phys. Rev. D 96 (2017) 104034 [arXiv:1707.06308] [INSPIRE].ADSMathSciNetGoogle Scholar
  99. [99]
    R.B. Mann, Black holes of negative mass, Class. Quant. Grav. 14 (1997) 2927 [gr-qc/9705007] [INSPIRE].
  100. [100]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  101. [101]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  102. [102]
    S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].
  103. [103]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and Anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    S. Nojiri and S.D. Odintsov, The de Sitter/Anti-de Sitter black holes phase transition?, in the proceedings of the 1st Mexican Meeting on Mathematical and Experimental Physics, September 10-14, Mexico City, Mexico (2001), gr-qc/0112066 [INSPIRE].
  106. [106]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSMathSciNetGoogle Scholar
  107. [107]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  108. [108]
    R.B. Mann, Entropy of rotating Misner string space-times, Phys. Rev. D 61 (2000) 084013 [hep-th/9904148] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Castro, N. Dehmami, G. Giribet and D. Kastor, On the universality of inner black hole mechanics and higher curvature gravity, JHEP 07 (2013) 164 [arXiv:1304.1696] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  110. [110]
    T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant. Grav. 21 (2004) 3447 [gr-qc/0402044] [INSPIRE].
  111. [111]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  112. [112]
    S. Gunasekaran, R.B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    M. Brigante et al., Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
  115. [115]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  116. [116]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  117. [117]
    J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  120. [120]
    A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  121. [121]
    S. Deser and A.V. Ryzhov, Curvature invariants of static spherically symmetric geometries, Class. Quant. Grav. 22 (2005) 3315 [gr-qc/0505039] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Mozhgan Mir
    • 1
    • 2
  • Robie A. Hennigar
    • 3
    Email author
  • Jamil Ahmed
    • 4
  • Robert B. Mann
    • 1
    • 5
  1. 1.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  2. 2.Department of Physics, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  3. 3.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada
  4. 4.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  5. 5.Perimeter InstituteWaterlooCanada

Personalised recommendations