Advertisement

Light-cone distribution amplitudes of pseudoscalar mesons from lattice QCD

  • Gunnar S. Bali
  • Vladimir M. Braun
  • Simon Bürger
  • Meinulf Göckeler
  • Michael Gruber
  • Fabian Hutzler
  • Piotr Korcyl
  • Andreas Schäfer
  • André Sternbeck
  • Philipp WeinEmail author
  • on behalf of the RQCD collaboration
Open Access
Regular Article - Theoretical Physics

Abstract

We present the first lattice determination of the two lowest Gegenbauer moments of the leading-twist pion and kaon light-cone distribution amplitudes with full control of all errors: \( {a}_2^{\pi }={0.101}_{-24}^{+24} \) for the pion; \( {a}_1^K={0.0533}_{-35}^{+34} \) and \( {a}_2^K={0.090}_{-20}^{+19} \) for the kaon. The calculation is carried out on 35 different CLS ensembles with Nf = 2 + 1 flavors of dynamical Wilson-clover fermions. These cover a multitude of pion and kaon mass combinations (including the physical point) and 5 different lattice spacings down to a = 0.039 fm. The momentum smearing technique and a new operator basis are employed to reduce statistical fluctuations and to improve the overlap with the ground states. The results are obtained from a combined chiral and continuum limit extrapolation that includes three separate trajectories in the quark mass plane.

Keywords

Lattice QCD Nonperturbative Effects Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A.V. Radyushkin, Deep elastic processes of composite particles in field theory and asymptotic freedom, hep-ph/0410276 [INSPIRE].
  2. [2]
    V.L. Chernyak and A.R. Zhitnitsky, Asymptotic form of hadronic form factors in the quark model, JETP Lett. 25 (1977) 510 [Pisma Zh. Eksp. Teor. Fiz. 25 (1977) 544] [INSPIRE].ADSGoogle Scholar
  3. [3]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in Quantum Chromodynamics: The Form Factors of Baryons at Large Momentum Transfer, Phys. Rev. Lett. 43 (1979) 545 [Erratum ibid. 43 (1979) 1625] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form factors of mesons, Phys. Lett. 87B (1979) 359 [INSPIRE].
  5. [5]
    A.V. Efremov and A.V. Radyushkin, Asymptotic behavior of the pion form factor in quantum chromodynamics, Theor. Math. Phys. 42 (1980) 97 [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    A.V. Efremov and A.V. Radyushkin, Factorization and asymptotic behaviour of pion form factor in QCD, Phys. Lett. 94B (1980) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  8. [8]
    V.L. Chernyak and A.R. Zhitnitsky, Exclusive decays of heavy mesons, Nucl. Phys. B 201 (1982) 492 [Erratum ibid. B 214 (1983) 547] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Theoretical foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.L. Chernyak and A.R. Zhitnitsky, Asymptotic behaviour of exclusive processes in QCD, Phys. Rept. 112 (1984) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Isgur and C.H. Llewellyn Smith, The applicability of perturbative QCD to exclusive processes, Nucl. Phys. B 317 (1989) 526 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.V. Radyushkin, Hadronic form factors: Perturbative QCD vs QCD sum rules, Nucl. Phys. A 532 (1991) 141c [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V.A. Nesterenko and A.V. Radyushkin, Sum rules and pion form factor in QCD, Phys. Lett. 115B (1982) 410 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.V. Mikhailov and A.V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev. D 45 (1992) 1754 [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, QCD-based pion distribution amplitudes confronting experimental data, Phys. Lett. D 508 (2001) 279 [Erratum ibid. B 590 (2004) 309] [hep-ph/0103119] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V.M. Braun and I.E. Filyanov, QCD sum rules in exclusive kinematics and pion wave function, Z. Phys. C 44 (1989) 157 [INSPIRE].Google Scholar
  17. [17]
    V.M. Braun and I.E. Halperin, Soft contribution to the pion form factor from light-cone QCD sum rules, Phys. Lett. B 328 (1994) 457 [hep-ph/9402270] [INSPIRE].
  18. [18]
    V.M. Braun, A. Khodjamirian and M. Maul, Pion form factor in QCD at intermediate momentum transfers, Phys. Rev. D 61 (2000) 073004 [hep-ph/9907495] [INSPIRE].
  19. [19]
    A. Khodjamirian, R. Rückl, S. Weinzierl, C.W. Winhart and O.I. Yakovlev, Predictions on \( B\to \pi \overline{l}{\nu}_l \) , \( D\to \pi \overline{l}{\nu}_l \) , and \( D\to K\overline{l}{\nu}_l \) from QCD light-cone sum rules, Phys. Rev. D 62 (2000) 114002 [hep-ph/0001297] [INSPIRE].
  20. [20]
    P. Ball and R. Zwicky, New results on B → π, K, η decay form factors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].
  21. [21]
    A.P. Bakulev, A.V. Pimikov and N.G. Stefanis, QCD sum rules with nonlocal condensates and the spacelike pion form factor, Phys. Rev. D 79 (2009) 093010 [arXiv:0904.2304] [INSPIRE].ADSzbMATHGoogle Scholar
  22. [22]
    S.S. Agaev, V.M. Braun, N. Offen and F.A. Porkert, Light cone sum rules for the π 0 γ γ form factor revisited, Phys. Rev. D 83 (2011) 054020 [arXiv:1012.4671] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Khodjamirian, Th. Mannel, N. Offen and Y.-M. Wang, B → πℓν width and |V ub | from QCD light-cone sum rules, Phys. Rev. D 83 (2011) 094031 [arXiv:1103.2655] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov and N.G. Stefanis, Comparing antithetic trends of data for the pion-photon transition form factor, Phys. Rev. D 86 (2012) 031501(R) [arXiv:1205.3770] [INSPIRE].
  25. [25]
    S.V. Mikhailov, A.V. Pimikov and N.G. Stefanis, Systematic estimation of theoretical uncertainties in the calculation of the pion-photon transition form factor using light-cone sum rules, Phys. Rev. D 93 (2016) 114018 [arXiv:1604.06391] [INSPIRE].ADSGoogle Scholar
  26. [26]
    BaBar collaboration, Measurement of the γγ → π 0 transition form factor, Phys. Rev. D 80 (2009) 052002 [arXiv:0905.4778] [INSPIRE].
  27. [27]
    M.V. Polyakov, On the Pion Distribution Amplitude Shape, JETP Lett. 90 (2009) 228 [arXiv:0906.0538] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.V. Radyushkin, Shape of pion distribution amplitude, Phys. Rev. D 80 (2009) 094009 [arXiv:0906.0323] [INSPIRE].
  29. [29]
    Belle collaboration, Measurement of γγ → π 0 transition form factor at Belle, Phys. Rev. D 86 (2012) 092007 [arXiv:1205.3249] [INSPIRE].
  30. [30]
    Belle-II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].
  31. [31]
    L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt and P.C. Tandy, Imaging Dynamical Chiral-Symmetry Breaking: Pion Wave Function on the Light Front, Phys. Rev. Lett. 110 (2013) 132001 [arXiv:1301.0324] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N.G. Stefanis and A.V. Pimikov, Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson, Nucl. Phys. A 945 (2016) 248 [arXiv:1506.01302] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Ruiz Arriola and W. Broniowski, Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model, Phys. Rev. D 66 (2002) 094016 [hep-ph/0207266] [INSPIRE].
  34. [34]
    E. Ruiz Arriola and W. Broniowski, Pion transition form factor and distribution amplitudes in large-N c Regge models, Phys. Rev. D 74 (2006) 034008 [hep-ph/0605318] [INSPIRE].
  35. [35]
    A.S. Kronfeld and D.M. Photiadis, Phenomenology on the lattice: Composite operators in lattice gauge theory, Phys. Rev. D 31 (1985) 2939 [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Martinelli and C.T. Sachrajda, A lattice calculation of the second moment of the pion’s distribution amplitude, Phys. Lett. B 190 (1987) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T.A. DeGrand and R.D. Loft, Lattice pseudoscalar-meson wave-function properties, Phys. Rev. D 38 (1988) 954 [INSPIRE].ADSGoogle Scholar
  38. [38]
    UKQCD collaboration, The second moment of the pion’s distribution amplitude, Nucl. Phys. Proc. Suppl. 83 (2000) 235 [hep-lat/9909147] [INSPIRE].
  39. [39]
    L. Del Debbio, M. Di Pierro and A. Dougall, The Second Moment of the Pion Light Cone Wave Function, Nucl. Phys. Proc. Suppl. 119 (2003) 416 [hep-lat/0211037] [INSPIRE].
  40. [40]
    D. Daniel, R. Gupta and D.G. Richards, A Calculation of the pion’s quark distribution amplitude in lattice QCD with dynamical fermions, Phys. Rev. D 43 (1991) 3715 [INSPIRE].ADSGoogle Scholar
  41. [41]
    V.M. Braun et al., Moments of pseudoscalar meson distribution amplitudes from the lattice, Phys. Rev. D 74 (2006) 074501 [hep-lat/0606012] [INSPIRE].
  42. [42]
    R. Arthur et al., Lattice results for low moments of light meson distribution amplitudes, Phys. Rev. D 83 (2011) 074505 [arXiv:1011.5906] [INSPIRE].ADSGoogle Scholar
  43. [43]
    V.M. Braun et al., Second moment of the pion light-cone distribution amplitude from lattice QCD, Phys. Rev. D 92 (2015) 014504 [arXiv:1503.03656] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Bruno et al., Simulation of QCD with N f = 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G.S. Bali, B. Lang, B.U. Musch and A. Schäfer, Novel quark smearing for hadrons with high momenta in lattice QCD, Phys. Rev. D 93 (2016) 094515 [arXiv:1602.05525] [INSPIRE].ADSGoogle Scholar
  46. [46]
    RQCD collaboration, Second moment of the pion distribution amplitude with the momentum smearing technique, Phys. Lett. B 774 (2017) 91 [arXiv:1705.10236] [INSPIRE].
  47. [47]
    G.S. Bali et al., Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit, PoS(LATTICE2018) 107 [arXiv:1811.06050] [INSPIRE].
  48. [48]
    RQCD collaboration, Light-cone distribution amplitudes of octet baryons from lattice QCD, Eur. Phys. J. A 55 (2019) 116 [arXiv:1903.12590] [INSPIRE].
  49. [49]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  50. [50]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
  51. [51]
    V.M. Braun, G.P. Korchemsky and D. Müller, The Uses of Conformal Symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].
  52. [52]
    M. Falcioni, M.L. Paciello, G. Parisi and B. Taglienti, Again on SU(3) glueball mass, Nucl. Phys. B 251 (1985) 624 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Sturm, Y. Aoki, N.H. Christ, T. Izubuchi, C.T.C. Sachrajda and A. Soni, Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point, Phys. Rev. D 80 (2009) 014501 [arXiv:0901.2599] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefzbMATHGoogle Scholar
  55. [55]
    M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for non-perturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].
  57. [57]
    K.G. Chetyrkin and A. Rétey, Renormalization and running of quark mass and field in the regularization invariant and \( \overline{\mathrm{MS}} \) schemes at three loops and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [INSPIRE].
  58. [58]
    J.A. Gracey, Three loop anomalous dimension of non-singlet quark currents in the RI′ scheme, Nucl. Phys. B 662 (2003) 247 [hep-ph/0304113] [INSPIRE].
  59. [59]
    J.A. Gracey, Three loop anomalous dimension of the second moment of the transversity operator in the \( \overline{\mathrm{MS}} \) and RI′ schemes, Nucl. Phys. B 667 (2003) 242 [hep-ph/0306163] [INSPIRE].
  60. [60]
    J.A. Gracey, Two loop renormalization of the n = 2 Wilson operator in the RI′/SMOM scheme, JHEP 03 (2011) 109 [arXiv:1103.2055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.A. Gracey, RI′/SMOM scheme amplitudes for quark currents at two loops, Eur. Phys. J. C 71 (2011) 1567 [arXiv:1101.5266] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.A. Gracey, Amplitudes for the n = 3 moment of the Wilson operator at two loops in the RI′/SMOM scheme, Phys. Rev. D 84 (2011) 016002 [arXiv:1105.2138] [INSPIRE].ADSGoogle Scholar
  63. [63]
    ALPHA collaboration, QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter, Phys. Rev. Lett. 119 (2017) 102001 [arXiv:1706.03821] [INSPIRE].
  64. [64]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Bulava and S. Schaefer, Improvement of N f = 3 lattice QCD with Wilson fermions and tree-level improved gauge action, Nucl. Phys. B 874 (2013) 188 [arXiv:1304.7093] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory (I), Nucl. Phys. B 212 (1983) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    Y. Nakamura and H. Stüben, BQCD — Berlin quantum chromodynamics program, PoS(LATTICE 2010) 040 [arXiv:1011.0199] [INSPIRE].
  68. [68]
    RQCD collaboration, Lattice simulations with N f = 2 + 1 improved Wilson fermions at a fixed strange quark mass, Phys. Rev. D 94 (2016) 074501 [arXiv:1606.09039] [INSPIRE].
  69. [69]
    M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles, Phys. Rev. D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Gasser and H. Leutwyler, Spontaneously broken symmetries: Effective lagrangians at finite volume, Nucl. Phys. B 307 (1988) 763 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.-W. Chen and I.W. Stewart, Model-Independent Results for SU(3) Violation in Light-Cone Distribution Functions, Phys. Rev. Lett. 92 (2004) 202001 [hep-ph/0311285] [INSPIRE].
  74. [74]
    V.M. Braun et al., Distribution amplitudes of pseudoscalar mesons, PoS(LAT2006) 122 (2006) [hep-lat/0610055] [INSPIRE].
  75. [75]
    P.A. Boyle et al., The first moment of the Kaon distribution amplitude from N f = 2 + 1 Domain Wall Fermions, PoS(LAT2006) 111 (2006) [hep-lat/0610025] [INSPIRE].
  76. [76]
    UKQCD collaboration, A lattice computation of the first moment of the kaon’s distribution amplitude, Phys. Lett. B 641 (2006) 67 [hep-lat/0607018] [INSPIRE].
  77. [77]
    M.A. Donnellan et al., Lattice results for vector meson couplings and parton distribution amplitudes, PoS(LATTICE 2007) 369 [arXiv:0710.0869] [INSPIRE].
  78. [78]
    V.M. Braun et al., Pion Distribution Amplitude from Lattice QCD, PoS(QCDEV2015) 009 [arXiv:1510.07429] [INSPIRE].
  79. [79]
    A.P. Bakulev, S.V. Mikhailov and N.G. Stefanis, Unbiased analysis of CLEO data at NLO and the pion distribution amplitude, Phys. Rev. D 67 (2003) 074012 [hep-ph/0212250] [INSPIRE].
  80. [80]
    CLEO collaboration, Measurements of the meson-photon transition form factors of light pseudoscalar mesons at large momentum transfer, Phys. Rev. D 57 (1998) 33 [hep-ex/9707031] [INSPIRE].
  81. [81]
    A. Khodjamirian, Th. Mannel and M. Melcher, Kaon distribution amplitude from QCD sum rules, Phys. Rev. D 70 (2004) 094002 [hep-ph/0407226] [INSPIRE].
  82. [82]
    P. Ball, V.M. Braun and A. Lenz, Higher-twist distribution amplitudes of the K meson in QCD, JHEP 05 (2006) 004 [hep-ph/0603063] [INSPIRE].
  83. [83]
    A.P. Bakulev and S.V. Mikhailov, The ρ-meson and related meson wave functions in QCD sum rules with nonlocal condensates, Phys. Lett. B 436 (1998) 351 [hep-ph/9803298] [INSPIRE].
  84. [84]
    A. Schmedding and O.I. Yakovlev, Perturbative effects in the form factor γγ → π 0 and extraction of the pion distribution amplitude from CLEO data, Phys. Rev. D 62 (2000) 116002 [hep-ph/9905392] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S.S. Agaev, Impact of the higher twist effects on the γγ → π 0 transition form factor, Phys. Rev. D 72 (2005) 114010 [Erratum ibid. D 73 (2006) 059902(E)] [hep-ph/0511192] [INSPIRE].ADSGoogle Scholar
  86. [86]
    S.S. Agaev, V.M. Braun, N. Offen and F.A. Porkert, Belle data on the π 0 γ γ form factor: A game changer?, Phys. Rev. D 86 (2012) 077504 [arXiv:1206.3968] [INSPIRE].ADSGoogle Scholar
  87. [87]
    J. Bijnens and A. Khodjamirian, Exploring light-cone sum rules for pion and kaon form factors, Eur. Phys. J. C 26 (2002) 67 [hep-ph/0206252] [INSPIRE].
  88. [88]
    S.S. Agaev, Higher twist distribution amplitudes of the pion and electromagnetic form factor F π (Q 2), Phys. Rev. D 72 (2005) 074020 [hep-ph/0509345] [INSPIRE].
  89. [89]
    P. Ball and R. Zwicky, |V ub | and constraints on the leading-twist pion distribution amplitude from B → πℓν, Phys. Lett. B 625 (2005) 225 [hep-ph/0507076] [INSPIRE].
  90. [90]
    G. Duplančić, A. Khodjamirian, Th. Mannel, B. Melić and N. Offen, Light-cone sum rules for B → π form factors revisited, JHEP 04 (2008) 014 [arXiv:0801.1796] [INSPIRE].ADSGoogle Scholar
  91. [91]
    P. Ball and R. Zwicky, SU(3) breaking of leading-twist K and K distribution amplitudes — a reprise, Phys. Lett. B 633 (2006) 289 [hep-ph/0510338] [INSPIRE].
  92. [92]
    P. Ball and R. Zwicky, Operator relations for SU(3) breaking contributions to K and K distribution amplitudes, JHEP 02 (2006) 034 [hep-ph/0601086] [INSPIRE].
  93. [93]
    K.G. Chetyrkin, A. Khodjamirian and A.A. Pivovarov, Towards NNLO accuracy in the QCD sum rule for the kaon distribution amplitude, Phys. Lett. B 661 (2008) 250 [arXiv:0712.2999] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    C. Shi, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy and H.-s. Zong, Flavour symmetry breaking in the kaon parton distribution amplitude, Phys. Lett. B 738 (2014) 512 [arXiv:1406.3353] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    V. Braun and D. Müller, Exclusive processes in position space and the pion distribution amplitude, Eur. Phys. J. C 55 (2008) 349 [arXiv:0709.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin and H.-W. Lin, Pion distribution amplitude from lattice QCD, Phys. Rev. D 95 (2017) 094514 [arXiv:1702.00008] [INSPIRE].ADSGoogle Scholar
  97. [97]
    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions, Eur. Phys. J. C 78 (2018) 217 [arXiv:1709.04325] [INSPIRE].
  98. [98]
    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects, Phys. Rev. D 98 (2018) 094507 [arXiv:1807.06671] [INSPIRE].
  99. [99]
    A.V. Radyushkin, Pion distribution amplitude and quasidistributions, Phys. Rev. D 95 (2017) 056020 [arXiv:1701.02688] [INSPIRE].
  100. [100]
    LP3 collaboration, Kaon distribution amplitude from lattice QCD and the flavor SU(3) symmetry, Nucl. Phys. B 939 (2019) 429 [arXiv:1712.10025] [INSPIRE].
  101. [101]
    W. Detmold, I. Kanamori, C.-J.D. Lin, S. Mondal and Y. Zhao, Moments of pion distribution amplitude using operator product expansion on the lattice, PoS(LATTICE2018) 106 [arXiv:1810.12194] [INSPIRE].
  102. [102]
    Jülich Supercomputing Centre, JURECA: Modular supercomputer at Jülich Supercomputing Centre, JLSRF 4 (2018) A132.Google Scholar
  103. [103]
    P. Arts et al., QPACE 2 and Domain Decomposition on the Intel Xeon Phi, PoS(LATTICE2014) 021 (2015) [arXiv:1502.04025] [INSPIRE].
  104. [104]
    SciDAC, LHPC and UKQCD collaborations, The Chroma Software System for Lattice QCD, Nucl. Phys. B Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].
  105. [105]
    A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, Adaptive Aggregation-Based Domain Decomposition Multigrid for the Lattice Wilson-Dirac Operator, SIAM J. Sci. Comput. 36 (2014) A1581 [arXiv:1303.1377] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    S. Heybrock, M. Rottmann, P. Georg and T. Wettig, Adaptive algebraic multigrid on SIMD architectures, PoS(LATTICE 2015) 036 (2016) [arXiv:1512.04506] [INSPIRE].
  107. [107]
    P. Georg, D. Richtmann and T. Wettig, DD-αAMG on QPACE 3, EPJ Web Conf. 175 (2018) 02007 [arXiv:1710.07041] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Gunnar S. Bali
    • 1
    • 2
  • Vladimir M. Braun
    • 1
  • Simon Bürger
    • 1
  • Meinulf Göckeler
    • 1
  • Michael Gruber
    • 1
  • Fabian Hutzler
    • 1
  • Piotr Korcyl
    • 3
  • Andreas Schäfer
    • 1
  • André Sternbeck
    • 4
  • Philipp Wein
    • 1
    Email author
  • on behalf of the RQCD collaboration
  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  2. 2.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.Marian Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  4. 4.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations