Janossy densities for chiral random matrix ensembles and their applications to two-color QCD

  • Hiroyuki FujiEmail author
  • Issaku Kanamori
  • Shinsuke M. Nishigaki
Open Access
Regular Article - Theoretical Physics


We compute individual distributions of low-lying eigenvalues of massive chiral random matrix ensembles by the Nyström-type quadrature method for evaluating the Fredholm determinant and Pfaffian that represent the analytic continuation of the Janossy densities (conditional gap probabilities). A compact formula for individual eigenvalue distributions suited for precise numerical evaluation by the Nyström-type method is obtained in an explicit form, and the kth smallest eigenvalue distributions are numerically evaluated for chiral unitary and symplectic ensembles in the microscopic limit. As an application of our result, the low-lying Dirac spectra of the SU(2) lattice gauge theory with NF = 8 staggered flavors are fitted to the numerical prediction from the chiral symplectic ensemble, leading to a precise determination of the chiral condensate of a two-color QCD-like system in the future.


Matrix Models Lattice QCD Stochastic Processes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11057_MOESM1_ESM.nb (6.1 mb)
ESM 1 (NB 6202 kb)


  1. [1]
    M. Berry and J.P. Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Rev. 41 (2012)236.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R.G. Edwards, U.M. Heller, J.E. Kiskis and R. Narayanan, Quark spectra, topology and random matrix theory, Phys. Rev. Lett. 82 (1999) 4188 [hep-th/9902117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T.A. DeGrand and S. Schaefer, Chiral properties of two-flavor QCD in small volume and at large lattice spacing, Phys. Rev. D 72 (2005) 054503 [hep-lat/0506021] [INSPIRE].
  4. [4]
    JLQCD collaboration, Two-flavor lattice QCD simulation in the ϵ-regime with exact chiral symmetry, Phys. Rev. Lett. 98 (2007) 172001 [hep-lat/0702003] [INSPIRE].
  5. [5]
    P.V. Buividovich, E.V. Luschevskaya and M.I. Polikarpov, Finite-temperature chiral condensate and low-lying Dirac eigenvalues in quenched SU(2) lattice gauge theory, Phys. Rev. D 78 (2008) 074505 [arXiv:0809.3075] [INSPIRE].
  6. [6]
    C. Lehner, J. Bloch, S. Hashimoto and T. Wettig, Geometry dependence of RMT-based methods to extract the low-energy constants Sigma and F, JHEP 05 (2011) 115 [arXiv:1101.5576] [INSPIRE].
  7. [7]
    E.V. Shuryak and J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A 560 (1993) 306 [hep-th/9212088] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P.H. Damgaard, U.M. Heller, R. Niclasen and K. Rummukainen, Low lying eigenvalues of the QCD Dirac operator at finite temperature, Nucl. Phys. B 583 (2000) 347 [hep-lat/0003021] [INSPIRE].
  9. [9]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Pica, Beyond the standard model: charting fundamental interactions via lattice simulations, PoS(LATTICE 2016)015 [arXiv:1701.07782] [INSPIRE].
  11. [11]
    B. Svetitsky, Looking behind the Standard Model with lattice gauge theory, EPJ Web Conf. 175 (2018) 01017 [arXiv:1708.04840] [INSPIRE].
  12. [12]
    O. Witzel, Review on composite Higgs models, PoS(LATTICE 2018)006 [arXiv:1901.08216] [INSPIRE].
  13. [13]
    Z. Fodor et al., Nearly conformal gauge theories in finite volume, Phys. Lett. B 681 (2009) 353 [arXiv:0907.4562] [INSPIRE].
  14. [14]
    V. Leino et al., The gradient flow running coupling in SU(2) gauge theory with N f = 8 fundamental flavors, Phys. Rev. D 95 (2017) 114516 [arXiv:1701.04666] [INSPIRE].ADSGoogle Scholar
  15. [15]
    V. Leino, K. Rummukainen and K. Tuominen, Slope of the β-function at the fixed point of SU(2) gauge theory with six or eight flavors, Phys. Rev. D 98 (2018) 054503 [arXiv:1804.02319] [INSPIRE].
  16. [16]
    V. Leino et al., Infrared behaviour of SU(2) gauge theory with N f fundamental flavours, in the proceedings of the 13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII), July 31-August 6, Maynooth, Ireland (2018), arXiv:1811.12438 [INSPIRE].
  17. [17]
    C.Y.H. Huang et al., Lattice study for conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions, PoS(LATTICE 2015)224 [arXiv:1511.01968] [INSPIRE].
  18. [18]
    S.M. Nishigaki, P.H. Damgaard and T. Wettig, Smallest Dirac eigenvalue distribution from random matrix theory, Phys. Rev. D 58 (1998) 087704 [hep-th/9803007] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P.H. Damgaard and S.M. Nishigaki, Distribution of the k th smallest Dirac operator eigenvalue, Phys. Rev. D 63 (2001) 045012 [hep-th/0006111] [INSPIRE].
  20. [20]
    S.M. Nishigaki, Distribution of the k th smallest Dirac operator eigenvalue: an update, PoS(LATTICE 2015)057 [arXiv:1606.00276] [INSPIRE].
  21. [21]
    J.J.M. Verbaarschot, The Spectrum of the QCD Dirac operator and chiral random matrix theory: The Threefold way, Phys. Rev. Lett. 72 (1994) 2531 [hep-th/9401059] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.L. Mehta, Random matrices, 3rd edition, Elsevier, Amsterdam The NetherlandsGoogle Scholar
  23. [23]
    T. Nagao, Random matrices: an introduction (in Japanese), University of Tokyo Press, Tokyo Japan (2005).Google Scholar
  24. [24]
    P.J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs, Princeton University Press, Princeton U.S.A. (2010).Google Scholar
  25. [25]
    S.M. Nishigaki, Random matrices and gauge theory (in Japanese), Science Press, Tokyo, Japan (2016).Google Scholar
  26. [26]
    P.H. Damgaard and S.M. Nishigaki, Universal spectral correlators and massive Dirac operators, Nucl. Phys. B 518 (1998) 495 [hep-th/9711023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Wilke, T. Guhr and T. Wettig, The microscopic spectrum of the QCD Dirac operator with finite quark masses, Phys. Rev. D 57 (1998) 6486 [hep-th/9711057] [INSPIRE].ADSGoogle Scholar
  28. [28]
    F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962)140 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Nagao and S.M. Nishigaki, Massive chiral random matrix ensembles at β = 1 and β = 4: finite volume QCD partition functions, Phys. Rev. D 62 (2000) 065006 [hep-th/0001137] [INSPIRE].
  30. [30]
    T. Nagao and S.M. Nishigaki, Massive chiral random matrix ensembles at β = 1 and β = 4: QCD Dirac operator spectra, Phys. Rev. D 62 (2000) 065007 [hep-th/0003009] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    G. Akemann and E. Kanzieper, Spectra of massive and massless QCD Dirac operators: a novel link, Phys. Rev. Lett. 85 (2000) 1174 [hep-th/0001188] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Akemann and E. Kanzieper, Spectra of massive QCD Dirac operators from random matrix theory: all three chiral symmetry breaking patterns, Nucl. Phys. Proc. Suppl. 94 (2001) 681 [hep-lat/0010092] [INSPIRE].
  33. [33]
    A.D. Jackson, M.K. Sener and J.J.M. Verbaarschot, Finite volume partition functions and Itzykson-Zuber integrals, Phys. Lett. B 387 (1996) 355 [hep-th/9605183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P.J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402 (1993) 709 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Gaudin, Sur la loi limite de léspacement des valeurs propres d’une matrice aléatoire, Nucl. Phys. 25 (1961) 447.CrossRefzbMATHGoogle Scholar
  36. [36]
    M.L. Mehta and J. des Cloizeaux, The probabilities for several consecutive eigenvalues of a random matrix, Indian J. Pure Appl. Phys. 3 (1970) 329.MathSciNetzbMATHGoogle Scholar
  37. [37]
    A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988) 543.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Edelman, The distribution and moments of the smallest eigenvalue of a random matrix of wishart type, Lin. Alg. Appl. 159 (1991) 55.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel, Phys. Lett. B 305 (1993)115 [hep-th/9210074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C.A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel, Commun. Math. Phys. 161 (1994) 289 [hep-th/9304063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    P.J. Forrester and T. Hughes, Complex Wishart matrices and conductance in mesoscopic systems: Exact results , J. Math. Phys. 35 (1994) 6736.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    G. Akemann and P.H. Damgaard, Distributions of Dirac operator eigenvalues, Phys. Lett. B 583 (2004)199 [hep-th/0311171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    G. Akemann, J.C.R. Bloch, L. Shifrin and T. Wettig, Individual complex Dirac eigenvalue distributions from random matrix theory and lattice QCD at nonzero chemical potential, Phys. Rev. Lett. 100 (2008) 032002 [arXiv:0710.2865] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Akemann and P.H. Damgaard, Individual eigenvalue distributions of chiral random two-matrix theory and the determination of F (π), JHEP 03 (2008) 073 [arXiv:0803.1171] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Akemann, M.J. Phillips and L. Shifrin, Gap probabilities in non-hermitian random matrix theory, J. Math. Phys. 50 (2009) 063504 [arXiv:0901.0897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Akemann and A.C. Ipsen, The k th smallest Dirac operator eigenvalue and the pion decay constant, J. Phys. A 45 (2012) 115205 [arXiv:1110.6774] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    G. Akemann and A.C. Ipsen, Individual eigenvalue distributions for the Wilson Dirac operator, JHEP 04 (2012) 102 [arXiv:1202.1241] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    T. Guhr and T. Wettig, An Itzykson-Zuber-like integral and diffusion for complex ordinary and supermatrices, J. Math. Phys. 37 (1996) 6395 [hep-th/9605110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    W.H. Press et al., Numerical recipes in C, Cambridge University Press, Cambridge U.K. (1988).zbMATHGoogle Scholar
  50. [50]
    S.M. Nishigaki, Universality crossover between chiral random matrix ensembles and twisted SU(2) lattice Dirac spectra, Phys. Rev. D 86 (2012) 114505 [arXiv:1208.3452] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S.M. Nishigaki, Level spacings of parametric chiral random matrices and two-color QCD with twisted boundary condition, Prog. Theor. Phys. 128 (2012) 1283 [arXiv:1208.3878] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S.M. Nishigaki and T. Yamamoto, Individual eigenvalue distributions for chGSE-chGUE crossover and determination of low-energy constants in two-color QCD+QED, PoS(LATTICE 2014) 067 [arXiv:1501.07508] [INSPIRE].
  53. [53]
    T. Yamamoto and S.M. Nishigaki, Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory, PTEP 2018 (2018)023B01 [arXiv:1711.03388] [INSPIRE].Google Scholar
  54. [54]
    P.J. Forrester and N.S. Witte, The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble, Kyushu J. Math. 61(2) (2007) 457 [arXiv:0704.1926].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    N.S. Witte, F. Bornemann and P.J. Forrester, Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles, Nonlinearity 26 (2013) 1799 [arXiv:1209.2190].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Borodin and A. Soshnikov, Janossy densities I. Determinantal ensembles, J. Stat. Phys. 113 (2003) 595 [math-ph/0212063].
  57. [57]
    A. Soshnikov, Janossy densities II. Pfaffian ensembles, J. Stat. Phys. 113 (2003) 611 [math-ph/0301003].
  58. [58]
    F. Bornemann, On the numerical evaluation of Fredholm determinants, Math. Comp. 79 (2010)871 [arXiv:0804.2543].
  59. [59]
    F. Bornemann, On the numerical evaluation of distributions in random matrix theory: a review, Markov Processes Relat. Fields 16 (2010) 803 [arXiv:0904.1581].
  60. [60]
    C.Y.H. Huang, I. Kanamori, C.J.D. Lin and K. Ogawa, in preparation.Google Scholar
  61. [61]
    APE collaboration, Glueball masses and string tension in lattice QCD, Phys. Lett. B 192 (1987)163 [INSPIRE].
  62. [62]
    G. Akemann, T. Guhr, M. Kieburg, R. Wegner and T. Wirtz, Completing the picture for the smallest eigenvalue of real Wishart matrices, Phys. Rev. Lett. 113 (2014) 250201 [Erratum ibid. 114 (2015) 179901] [arXiv:1409.0360] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    T. Wirtz et al., The smallest eigenvalue distribution in the real Wishart-Laguerre ensemble with even topology, J. Phys. A 48 (2015) 245202 [arXiv:1502.03685] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  65. [65]
    A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).
  66. [66]
    V. Rosenhaus, An introduction to the SYK model, arXiv:1807.03334 [INSPIRE].
  67. [67]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] INSPIRE].
  68. [68]
    A.M. Garcıa-García, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003 [arXiv:1801.01071] [INSPIRE].
  69. [69]
    H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    A. Soshnikov, Determinantal random point fields, Russ. Math. Surv. 55(5) (2007) 923 [math/0002099].MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    R. Lyons, Determinantal probability measures, Publ. Math. Inst. Hautes Et. Sci. 98 (2003) 167 [math/0204325].MathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    J. Ben Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal processes and independence, Prob. Surv. 3 (2006) 206 [math/0503110].MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    O. Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Prob. 7 (1975) 83.MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    A. Borodin and G. Olshanski, Distributions on partitions, point processes, and the hypergeometric kernel, Commun. Math. Phys. 211 (2000) 335.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987)216 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Hiroyuki Fuji
    • 1
    • 2
    Email author
  • Issaku Kanamori
    • 3
    • 4
  • Shinsuke M. Nishigaki
    • 5
  1. 1.Faculty of EducationKagawa UniversityTakamatsuJapan
  2. 2.Centre for Quantum Geometry of Moduli SpacesAarhus UniversityAarhus CDenmark
  3. 3.Department of Physical ScienceHiroshima UniversityHigashi-hiroshimaJapan
  4. 4.RIKEN Center for Computational ScienceKobeJapan
  5. 5.Department of Physics and Materials ScienceShimane UniversityMatsueJapan

Personalised recommendations