Advertisement

Dynamical origin of fermion bulk masses in a warped extra dimension

  • Aqeel Ahmed
  • Adrian CarmonaEmail author
  • Javier Castellano Ruiz
  • Yi Chung
  • Matthias Neubert
Open Access
Regular Article - Theoretical Physics

Abstract

Extensions of the Standard Model featuring a warped extra dimension compactified on an S1/ℤ2 orbifold, in which the fermions and gauge bosons live in the bulk of the fifth dimension, offer one of the most compelling mechanisms for addressing both the hierarchy problem and the flavor puzzle of the Standard Model. However, the five-dimensional mass terms of bulk fermions must be odd functions on the orbifold, and as such they should be described by a field depending on the coordinate of the extra dimension. We demonstrate the feasibility of dynamically generating these fermion bulk masses with a bulk scalar field in warped extra dimensions. The bulk scalar acquires a vacuum expectation value, which is odd under the orbifold symmetry and gives rise to the fermion bulk masses through non-universal Yukawa-like interactions. Like in the conventional Randall-Sundrum setup, the localization of the different fermion zero modes along the extra dimension naturally explains the observed flavor structure and four-dimensional mass hierarchy of the SM fermions. We study the phenomenological implications of the backreaction on the metric and the modified fermion profiles due to the bulk scalar field on electroweak precision and flavor observables. Using up-to-date data, we show that the contributions to the S, T, and ϵK parameters require the mass of the first Kaluza-Klein gluon resonance to be of order 14 and 10 TeV in the minimal and the custodial model, respectively, regardless of the effect of the backreaction. Furthermore, effective flavor-changing interactions among the SM fermions induced by the bulk scalar are discussed. We also comment on the potential impact of the Higgs portal interaction of the bulk scalar on the couplings of the Higgs boson.

Keywords

Beyond Standard Model Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C. Csáki and P. Tanedo, Beyond the Standard Model, in Proceedings, 2013 European School of High-Energy Physics (ESHEP 2013), Paradfurdo, Hungary, 5–18 June 2013, CERN-2015-004, (2015), pg. 169 [arXiv:1602.04228] [INSPIRE].
  2. [2]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  3. [3]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP08 (2001) 017 [hep-th/0012148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP04 (2001) 021 [hep-th/0012248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP05 (2001) 064 [hep-th/0105048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Contino and A. Pomarol, Holography for fermions, JHEP11 (2004) 058 [hep-th/0406257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Gherghetta, A holographic view of beyond the Standard Model physics, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., 1–26 June 2009, World Scientific, Singapore (2011), pg. 165 [arXiv:1008.2570] [INSPIRE].
  10. [10]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett.B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].
  11. [11]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett.B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].
  12. [12]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys.B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  13. [13]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett.B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
  14. [14]
    H. Georgi, A.K. Grant and G. Hailu, Chiral fermions, orbifolds, scalars and fat branes, Phys. Rev.D 63 (2001) 064027 [hep-ph/0007350] [INSPIRE].
  15. [15]
    B. Grzadkowski and M. Toharia, Low-energy effective theory from a nontrivial scalar background in extra dimensions, Nucl. Phys.B 686 (2004) 165 [hep-ph/0401108] [INSPIRE].
  16. [16]
    M. Toharia and M. Trodden, Metastable kinks in the orbifold, Phys. Rev. Lett.100 (2008) 041602 [arXiv:0708.4005] [INSPIRE].
  17. [17]
    M. Toharia, M. Trodden and E.J. West, Scalar kinks in warped extra dimensions, Phys. Rev.D 82 (2010) 025009 [arXiv:1002.0011] [INSPIRE].
  18. [18]
    C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev.D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].
  19. [19]
    M. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev.D 68 (2003) 035010 [hep-ph/0305188] [INSPIRE].
  20. [20]
    M. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev.D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE].
  21. [21]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev.D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].
  22. [22]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP03 (2009) 001 [arXiv:0809.1073] [INSPIRE].
  24. [24]
    M. Bauer, S. Casagrande, L. Gründer, U. Haisch and M. Neubert, Little Randall-Sundrum models: ϵ Kstrikes again, Phys. Rev.D 79 (2009) 076001 [arXiv:0811.3678] [INSPIRE].
  25. [25]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP09 (2010) 017 [arXiv:0912.1625] [INSPIRE].
  26. [26]
    M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett.108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].
  27. [27]
    P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett.B 115 (1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Pomoni and L. Rastelli, Large N field theory and AdS tachyons, JHEP04 (2009) 020 [arXiv:0805.2261] [INSPIRE].
  31. [31]
    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev.D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSzbMATHGoogle Scholar
  32. [32]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett.83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  33. [33]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev.D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].
  34. [34]
    J. Lesgourgues and L. Sorbo, Goldberger-Wise variations: stabilizing brane models with a bulk scalar, Phys. Rev.D 69 (2004) 084010 [hep-th/0310007] [INSPIRE].
  35. [35]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP10 (2008) 094 [arXiv:0807.4937] [INSPIRE].
  36. [36]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  38. [38]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys.12 (2010) 075011 [arXiv:0908.1968] [INSPIRE].
  39. [39]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP05 (2011) 083 [arXiv:1103.1388] [INSPIRE].
  40. [40]
    P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor models, Nucl. Phys.B 173 (1980) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett.B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  42. [42]
    J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer and J. Stelzer, Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J.C 78 (2018) 675 [arXiv:1803.01853] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Goertz, U. Haisch and M. Neubert, Bounds on warped extra dimensions from a Standard Model-like Higgs boson, Phys. Lett.B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP08 (2012) 156 [arXiv:1204.0008] [INSPIRE].
  45. [45]
    R. Malm, M. Neubert, K. Novotny and C. Schmell, 5D perspective on Higgs production at the boundary of a warped extra dimension, JHEP01 (2014) 173 [arXiv:1303.5702] [INSPIRE].
  46. [46]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys.B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].
  47. [47]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev.D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].
  48. [48]
    FCC collaboration, Future Circular Collider, CERN-ACC-2018-0058, CERN, Geneva, Switzerland (2018).
  49. [49]
    K. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [INSPIRE].
  50. [50]
    M. Ciuchini et al., Δm K and ϵ Kin SUSY at the next-to-leading order, JHEP10 (1998) 008 [hep-ph/9808328] [INSPIRE].
  51. [51]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  52. [52]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ Kand ΔM K, Phys. Rev. Lett.108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].
  53. [53]
    D.M. Straub, flavio: a python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
  54. [54]
    K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett.93 (2004) 201804 [hep-ph/0406101] [INSPIRE].
  55. [55]
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP03 (2009) 108 [arXiv:0812.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Bauer, C. Hörner and M. Neubert, Diphoton resonance from a warped extra dimension, JHEP07 (2016) 094 [arXiv:1603.05978] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall Higgs in the universal Randall-Sundrum model, JHEP08 (2006) 042 [hep-ph/0508279] [INSPIRE].
  58. [58]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP02 (2007) 036 [hep-ph/0611358] [INSPIRE].
  59. [59]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions, Phys. Rev.D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].
  60. [60]
    L. Vecchi, A natural hierarchy and a low new physics scale from a bulk Higgs, JHEP11 (2011) 102 [arXiv:1012.3742] [INSPIRE].
  61. [61]
    P.R. Archer, The fermion mass hierarchy in models with warped extra dimensions and a bulk Higgs, JHEP09 (2012) 095 [arXiv:1204.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Hahn, C. Hörner, R. Malm, M. Neubert, K. Novotny and C. Schmell, Higgs decay into two photons at the boundary of a warped extra dimension, Eur. Phys. J.C 74 (2014) 2857 [arXiv:1312.5731] [INSPIRE].
  63. [63]
    P.R. Archer, M. Carena, A. Carmona and M. Neubert, Higgs production and decay in models of a warped extra dimension with a bulk Higgs, JHEP01 (2015) 060 [arXiv:1408.5406] [INSPIRE].
  64. [64]
    HL/HE WG2 group collaboration, Higgs physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [INSPIRE].
  65. [65]
    J. de Blas et al., Higgs boson studies at future particle colliders, arXiv:1905.03764 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Theoretische Natuurkunde & IIHE/ELEMVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of PhysicsUniversity of California DavisDavisU.S.A.
  4. 4.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  5. 5.Department of Physics & LEPPCornell UniversityIthacaU.S.A.

Personalised recommendations