Advertisement

The Swampland Distance Conjecture and towers of tensionless branes

  • Anamaría Font
  • Alvaro HerráezEmail author
  • Luis E. Ibáñez
Open Access
Regular Article - Theoretical Physics

Abstract

The Swampland Distance Conjecture states that at infinite distance in the scalar moduli space an infinite tower of particles become exponentially massless. We study this issue in the context of 4d type IIA and type IIB Calabi-Yau compactifications. We find that for large moduli not only towers of particles but also domain walls and strings become tensionless. We study in detail the case of type IIA and IIB 𝒩 = 1 CY orientifolds and show how for infinite Kähler and/or complex structure moduli towers of domain walls and strings become tensionless, depending on the particular direction in moduli space. For the type IIA case we construct the monodromy orbits of domain walls in detail. We study the structure of mass scales in these limits and find that these towers may occur at the same scale as the fundamental string scale or the KK scale making sometimes difficult an effective field theory description. The structure of IIA and IIB towers are consistent with mirror symmetry, as long as towers of exotic domain walls associated to non-geometric fluxes also appear. We briefly discuss the issue of emergence within this context and the possible implications for 4d vacua.

Keywords

D-branes Flux compactifications Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  4. [4]
    E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  6. [6]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Palti, The weak gravity conjecture and scalar fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Hebecker, P. Henkenjohann and L.T. Witkowski, Flat monodromies and a moduli space size conjecture, JHEP12 (2017) 033 [arXiv:1708.06761] [INSPIRE].
  9. [9]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE].
  10. [10]
    B. Heidenreich, M. Reece and T. Rudelius, The weak gravity conjecture and emergence from an ultraviolet cutoff, Eur. Phys. J.C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
  13. [13]
    T.W. Grimm, C. Li and E. Palti, Infinite distance networks in field space and charge orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P. Corvilain, T.W. Grimm and I. Valenzuela, The swampland distance conjecture for Kähler moduli, arXiv:1812.07548 [INSPIRE].
  15. [15]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Landete and G. Shiu, Mass hierarchies and dynamical field range, Phys. Rev.D 98 (2018) 066012 [arXiv:1806.01874] [INSPIRE].
  17. [17]
    R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The refined swampland distance conjecture in Calabi-Yau moduli spaces, JHEP06 (2018) 052 [arXiv:1803.04989] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].
  20. [20]
    S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, arXiv:1901.08065 [INSPIRE].
  21. [21]
    S.K. Garg and C. Krishnan, Bounds on slow roll and the de sitter swampland, arXiv:1807.05193 [INSPIRE].
  22. [22]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
  23. [23]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    F. Baume and E. Palti, Backreacted axion field ranges in string theory, JHEP08 (2016) 043 [arXiv:1602.06517] [INSPIRE].
  25. [25]
    I. Valenzuela, Backreaction issues in axion monodromy and Minkowski 4-forms, JHEP06 (2017) 098 [arXiv:1611.00394] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R. Blumenhagen, I. Valenzuela and F. Wolf, The swampland conjecture and F-term axion monodromy inflation, JHEP07 (2017) 145 [arXiv:1703.05776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Reece, Photon masses in the landscape and the swampland, arXiv:1808.09966 [INSPIRE].
  28. [28]
    A. Hebecker, D. Junghans and A. Schachner, Large field ranges from aligned and misaligned winding, JHEP03 (2019) 192 [arXiv:1812.05626] [INSPIRE].
  29. [29]
    R. Blumenhagen, D. Kläwer and L. Schlechter, Swampland variations on a theme by KKLT, JHEP05 (2019) 152 [arXiv:1902.07724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Buratti, J. Calderón and A.M. Uranga, Transplanckian axion monodromy!?, JHEP05 (2019) 176 [arXiv:1812.05016] [INSPIRE].
  31. [31]
    E. Gonzalo, L.E. Ibáñez and Á. M. Uranga, Modular symmetries and the swampland conjectures, JHEP05 (2019) 105 [arXiv:1812.06520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Joshi and A. Klemm, Swampland distance conjecture for one-parameter Calabi-Yau threefolds, arXiv:1903.00596 [INSPIRE].
  33. [33]
    E. Gonzalo and L.E. Ibáñez, A strong scalar weak gravity conjecture and some implications, arXiv:1903.08878 [INSPIRE].
  34. [34]
    F. Marchesano and M. Wiesner, Instantons and infinite distances, arXiv:1904.04848 [INSPIRE].
  35. [35]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP10 (2016) 159 [arXiv:1606.08438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev.D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].
  39. [39]
    L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway relaxion monodromy, JHEP02 (2018) 124 [arXiv:1610.05320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Herráez and L.E. Ibáñez, An axion-induced SM/MSSM Higgs landscape and the weak gravity conjecture, JHEP02 (2017) 109 [arXiv:1610.08836] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Montero, Are tiny gauge couplings out of the swampland?, JHEP10 (2017) 208 [arXiv:1708.02249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    L.E. Ibáñez and M. Montero, A note on the WGC, effective field theory and clockwork within string theory, JHEP02 (2018) 057 [arXiv:1709.02392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    G. Aldazabal and L.E. Ibáñez, A note on 4D heterotic string vacua, FI-terms and the swampland, Phys. Lett.B 782 (2018) 375 [arXiv:1804.07322] [INSPIRE].
  44. [44]
    C. Cheung, J. Liu and G.N. Remmen, Proof of the weak gravity conjecture from black hole entropy, JHEP10 (2018) 004 [arXiv:1801.08546] [INSPIRE].
  45. [45]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP04 (2016) 020 [arXiv:1512.00025] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, flux string vacua, axion stability and naturalness, JHEP12 (2015) 119 [arXiv:1507.06793] [INSPIRE].
  48. [48]
    A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The type IIA flux potential, 4-forms and Freed-Witten anomalies, JHEP09 (2018) 018 [arXiv:1802.05771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in supergravity and flux compactifications, Eur. Phys. J.C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].
  50. [50]
    I. Bandos, F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms, dualities and membranes in four-dimensional supergravity, JHEP07 (2018) 028 [arXiv:1803.01405] [INSPIRE].
  51. [51]
    I. Bandos, F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Higher forms and membranes in 4D supergravities, in Durham Symposium, Higher Structures in M-theory, Durham, U.K., 12–18 August 2018 [arXiv:1903.02841] [INSPIRE].
  52. [52]
    D. Escobar, F. Marchesano and W. Staessens, Type IIA flux vacua with mobile D6-branes, JHEP01 (2019) 096 [arXiv:1811.09282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Escobar, F. Marchesano and W. Staessens, Type IIA flux vacua and α-corrections, JHEP06 (2019) 129 [arXiv:1812.08735] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP05 (2006) 070 [hep-th/0602089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  57. [57]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J. Louis and A. Micu, Type II theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys.B 635 (2002) 395 [hep-th/0202168] [INSPIRE].
  60. [60]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP06 (2005) 047 [hep-th/0503169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP07 (2005) 066 [hep-th/0505160] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    P.G. Cámara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    E. Palti, G. Tasinato and J. Ward, Weakly-coupled IIA flux compactifications, JHEP06 (2008) 084 [arXiv:0804.1248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys.B 718 (2005) 153 [hep-th/0412277] [INSPIRE].
  65. [65]
    F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP09 (2016) 062 [arXiv:1606.00508] [INSPIRE].
  66. [66]
    L.E. Ibáñez, and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge Univ. Pr., Cambridge, U.K. (2012) [INSPIRE].
  67. [67]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  68. [68]
    T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett.B 474 (2000) 130 [hep-th/9912152] [INSPIRE].
  69. [69]
    A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A.D. Linde, Domain walls, near-BPS bubbles and probabilities in the landscape, Phys. Rev.D 74 (2006) 086010 [hep-th/0605266] [INSPIRE].
  70. [70]
    E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures, Annals Math.123 (1986) 457.Google Scholar
  71. [71]
    W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math.22 (1973) 211.ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys.B 699 (2004) 387 [hep-th/0403067] [INSPIRE].
  73. [73]
    R. Blumenhagen et al., A flux-scaling scenario for high-scale moduli stabilization in string theory, Nucl. Phys.B 897 (2015) 500 [arXiv:1503.07634] [INSPIRE].
  74. [74]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav.18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Anamaría Font
    • 1
  • Alvaro Herráez
    • 2
    Email author
  • Luis E. Ibáñez
    • 2
  1. 1.Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Departamento de Física Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations