Advertisement

More analytic bootstrap: nonperturbative effects and fermions

  • Soner Albayrak
  • David MeltzerEmail author
  • David Poland
Open Access
Regular Article - Theoretical Physics

Abstract

We develop the analytic bootstrap in several directions. First, we discuss the appearance of nonperturbative effects in the Lorentzian inversion formula, which are exponentially suppressed at large spin but important at finite spin. We show that these effects are important for precision applications of the analytic bootstrap in the context of the 3d Ising and O(2) models. In the former they allow us to reproduce the spin-2 stress tensor with error at the 10−5 level while in the latter requiring that we reproduce the stress tensor allows us to predict the coupling to the leading charge-2 operator. We also extend perturbative calculations in the lightcone bootstrap to fermion 4-point functions in 3d, predicting the leading and subleading asymptotic behavior for the double-twist operators built out of two fermions.

Keywords

Conformal and W Symmetry Conformal Field Theory Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [INSPIRE].Google Scholar
  3. [3]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 15002 [arXiv:1805.04405] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  6. [6]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  7. [7]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N ) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP11 (2007) 019 [arXiv:0708.0672] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP02 (2016) 143 [arXiv:1511.08025] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    C. Sleight and M. Taronna, Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  18. [18]
    C. Sleight and M. Taronna, Anomalous Dimensions from Crossing Kernels, JHEP11 (2018) 089 [arXiv:1807.05941] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP12 (2017) 013 [arXiv:1705.03453] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP07 (2018) 157 [arXiv:1712.04861] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Shockwaves from the Operator Product Expansion, JHEP03 (2019) 201 [arXiv:1709.03597] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A Conformal Collider for Holographic CFTs, JHEP10 (2018) 156 [arXiv:1805.07393] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A Bound on Massive Higher Spin Particles, JHEP04 (2019) 056 [arXiv:1811.01952] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP07 (2018) 085 [arXiv:1711.03816] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP11 (2018) 052 [arXiv:1806.10919] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    C. Cardona, S. Guha, S.K. KaNuMIlli and K. Sen, Resummation at finite conformal spin, JHEP01 (2019) 077 [arXiv:1811.00213] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops and 6j Symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  34. [34]
    E. Elkhidir and D. Karateev, Scalar-Fermion Analytic Bootstrap in 4D, JHEP06 (2019) 026 [arXiv:1712.01554] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP03 (2016) 120 [arXiv:1508.00012] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu and D. Simmons-Duffin, Bootstrapping 3D Fermions with Global Symmetries, JHEP01 (2018) 036 [arXiv:1705.03484] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    J. Rong and N. Su, Bootstrapping minimal \( \mathcal{N} \)= 1 superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].
  38. [38]
    A. Atanasov, A. Hillman and D. Poland, Bootstrapping the Minimal 3D SCFT, JHEP11 (2018) 140 [arXiv:1807.05702] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion Conformal Bootstrap in 4d, JHEP06 (2019) 088 [arXiv:1902.05969] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  40. [40]
    M. Hogervorst, Dimensional Reduction for Conformal Blocks, JHEP09 (2016) 017 [arXiv:1604.08913] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP07 (2017) 019 [arXiv:1612.05032] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    S. Caron-Huot, work in progress.Google Scholar
  43. [43]
    M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari, The critical exponents of the superfluid transition in He-4, Phys. Rev. B 74 (2006) 144506 [cond-mat/0605083] [INSPIRE].
  44. [44]
    D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis and Mean Field Theory, arXiv:1809.05111 [INSPIRE].
  45. [45]
    S. Albayrak, D. Meltzer and D. Poland, work in progress.Google Scholar
  46. [46]
    D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP02 (2018) 081 [arXiv:1706.07813] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
  48. [48]
    D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
  49. [49]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Soner Albayrak
    • 1
    • 2
  • David Meltzer
    • 1
    • 2
    Email author
  • David Poland
    • 1
    • 2
  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCaltechPasadenaU.S.A.

Personalised recommendations