Advertisement

’t Hooft anomalies and the holomorphy of supersymmetric partition functions

  • Cyril Closset
  • Lorenzo Di PietroEmail author
  • Heeyeon Kim
Open Access
Regular Article - Theoretical Physics

Abstract

We study the dependence of supersymmetric partition functions on continuous parameters for the flavor symmetry group, GF, for 2d \( \mathcal{N} \) = (0, 2) and 4d \( \mathcal{N} \) = 1 supersymmetric quantum field theories. In any diffeomorphism-invariant scheme and in the presence of GF ’t Hooft anomalies, the supersymmetric Ward identities imply that the partition function has a non-holomorphic dependence on the flavor parameters. We show this explicitly for the 2d torus partition function, \( {Z}_{T^2} \), and for a large class of 4d partition functions on half-BPS four-manifolds, \( {Z}_{{\mathcal{M}}^4} \)— in particular, for\( \mathcal{M} \)4 = S3 × S1 and \( \mathcal{M} \)4 = Σg × T2. We propose a new expression for \( {Z}_{{\mathcal{M}}_{d-1}\times {S}^1} \), which differs from earlier holomorphic results by the introduction of a non-holomorphic “Casimir” pre-factor. The latter is fixed by studying the “high temperature” limit of the partition function. Our proposal agrees with the supersymmetric Ward identities, and with explicit calculations of the absolute value of the partition function using a gauge-invariant zeta-function regularization.

Keywords

Anomalies in Field and String Theories Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys.A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys.109 (1987) 525 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys.B 747 (2006) 329 [hep-th/0510060] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    C. Closset, H. Kim and B. Willett, \( \mathcal{N} \)= 1 supersymmetric indices and the four-dimensional A-model, JHEP08 (2017) 090 [arXiv:1707.05774] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of Supersymmetric Partition Functions, JHEP01 (2014) 124 [arXiv:1309.5876] [INSPIRE].
  7. [7]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys.104 (2014) 465 [arXiv:1305.0533] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \( \mathcal{N} \)= 2 Gauge Theories, Commun. Math. Phys.333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  9. [9]
    C. Closset and I. Shamir, The \( \mathcal{N} \)= 1 Chiral Multiplet on T 2× S 2and Supersymmetric Localization, JHEP03 (2014) 040 [arXiv:1311.2430] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP08 (2014) 123 [arXiv:1405.5144] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    T. Nishioka and I. Yaakov, Generalized indices for \( \mathcal{N} \)= 1 theories in four-dimensions, JHEP12 (2014) 150 [arXiv:1407.8520] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
  13. [13]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, From Rigid Supersymmetry to Twisted Holomorphic Theories, Phys. Rev.D 90 (2014) 085006 [arXiv:1407.2598] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Itoyama, V.P. Nair and H.-c. Ren, Supersymmetry Anomalies and Some Aspects of Renormalization, Nucl. Phys.B 262 (1985) 317 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    H. Itoyama, V.P. Nair and H.-c. Ren, Supersymmetry Anomalies: Further Results, Phys. Lett.168B (1986) 78 [INSPIRE].
  16. [16]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP07 (2017) 038 [arXiv:1703.04299] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, JHEP12 (2017) 107 [arXiv:1703.09607] [INSPIRE].
  18. [18]
    G. Katsianis, I. Papadimitriou, K. Skenderis and M. Taylor, Anomalous Supersymmetry, Phys. Rev. Lett.122 (2019) 231602 [arXiv:1902.06715] [INSPIRE].
  19. [19]
    I. Papadimitriou, Supersymmetry anomalies in \( \mathcal{N} \)= 1 conformal supergravity, JHEP04 (2019) 040 [arXiv:1902.06717] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  20. [20]
    O.S. An, J.U. Kang, J.C. Kim and Y.H. Ko, Quantum consistency in supersymmetric theories with R-symmetry in curved space, JHEP05 (2019) 146 [arXiv:1902.04525] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    O.S. An, Y.H. Ko and S.-H. Won, Super-Weyl anomaly from holography and rigid supersymmetry algebra on a two-sphere, Phys. Rev.D 99 (2019) 106007 [arXiv:1812.10209] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    I. Papadimitriou, Supersymmetry anomalies in new minimal supergravity, arXiv:1904.00347 [INSPIRE].
  23. [23]
    J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys.B 70 (1974) 39 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    B. Zumino, Anomalies, cocycles and Schwinger terms, in Symposium on Anomalies, Geometry, Topology, Argonne, Illinois, 28-30 March 1985 [INSPIRE].
  25. [25]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP08 (2012) 141 [arXiv:1205.1115] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP08 (2012) 061 [arXiv:1205.1062] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT, Phys. Rev.D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].
  29. [29]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP07 (2015) 127 [arXiv:1504.03698] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP07 (2015) 043 [arXiv:1503.05537] [INSPIRE].
  31. [31]
    N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly Polynomial, JHEP09 (2015) 142 [arXiv:1507.08553] [INSPIRE].
  32. [32]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP09 (2012) 046 [arXiv:1203.3544] [INSPIRE].
  33. [33]
    L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP12 (2014) 031 [arXiv:1407.6061] [INSPIRE].CrossRefzbMATHGoogle Scholar
  34. [34]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
  35. [35]
    M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, Phys. Rev.D 100 (2019) 026008 [arXiv:1901.08091] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Arabi Ardehali, Cardy-like asymptotics of the 4d \( \mathcal{N} \)= 4 index and AdS 5blackholes, JHEP06 (2019) 134 [arXiv:1902.06619] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy Formula, arXiv:1904.03455 [INSPIRE].
  38. [38]
    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The asymptotic growth of states of the 4d N = 1 superconformal index, submitted to JHEP (2019) [arXiv:1904.05865] [INSPIRE].
  39. [39]
    F. Benini and P. Milan, Black holes in 4d \( \mathcal{N} \)= 4 Super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  40. [40]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].
  41. [41]
    C. Hwang, S. Lee and P. Yi, Holonomy Saddles and Supersymmetry, Phys. Rev.D 97 (2018) 125013 [arXiv:1801.05460] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP05 (2013) 017 [arXiv:1212.3388] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition functions, JHEP07 (2016) 025 [arXiv:1512.03376] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP02 (2017) 132 [arXiv:1612.06761] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys.B 405 (1993) 279 [hep-th/9302103] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    S. Murthy, A holomorphic anomaly in the elliptic genus, JHEP06 (2014) 165 [arXiv:1311.0918] [INSPIRE].
  47. [47]
    J. Troost, An Elliptic Triptych, JHEP10 (2017) 078 [arXiv:1706.02576] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys.1 (1997) 298 [hep-th/9709193] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  49. [49]
    D. Quillen, Determinants of cauchy-riemann operators over a riemann surface, Funct. Anal. Appl.19 (1985) 31.CrossRefzbMATHGoogle Scholar
  50. [50]
    L. Álvarez-Gaumé, G.W. Moore and C. Vafa, Theta Functions, Modular Invariance and Strings, Commun. Math. Phys.106 (1986) 1 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP03 (2014) 080 [arXiv:1305.0266] [INSPIRE].
  52. [52]
    L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, Topology34 (1995) 291.CrossRefMathSciNetzbMATHGoogle Scholar
  53. [53]
    K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, JHEP01 (2015) 124 [arXiv:1407.2567] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    A. Arabi Ardehali, F. Larsen, J.T. Liu and P. Szepietowski, Quantum corrections to central charges and supersymmetric Casimir energy in AdS 3/CF T 2, JHEP07 (2019) 071 [arXiv:1811.12367] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  55. [55]
    M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N = 1 Supergravity, Phys. Lett.105B (1981) 353 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys.58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  57. [57]
    T.T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, JHEP07 (2011) 095 [arXiv:1106.0031] [INSPIRE].
  58. [58]
    C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d \( \mathcal{N} \)= 2 theories, JHEP11 (2018) 004 [arXiv:1807.02328] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  59. [59]
    E. Witten, Topological σ-models, Commun. Math. Phys.118 (1988) 411 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  60. [60]
    B. Assel, D. Cassani and D. Martelli, Supersymmetric counterterms from new minimal supergravity, JHEP11 (2014) 135 [arXiv:1410.6487] [INSPIRE].
  61. [61]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, High-Temperature Expansion of Supersymmetric Partition Functions, JHEP07 (2015) 113 [arXiv:1502.07737] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    L. Di Pietro and M. Honda, Cardy Formula for 4d SUSY Theories and Localization, JHEP04 (2017) 055 [arXiv:1611.00380] [INSPIRE].
  63. [63]
    C. Hwang and P. Yi, Twisted Partition Functions and H-Saddles, JHEP06 (2017) 045 [arXiv:1704.08285] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    M. Sohnius and P.C. West, The Tensor Calculus and Matter Coupling of the Alternative Minimal Auxiliary Field Formulation of N = 1 Supergravity, Nucl. Phys.B 198 (1982) 493 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    O. Piguet and K. Sibold, The Anomaly in the Slavnov Identity for N = 1 Supersymmetric Yang-Mills Theories, Nucl. Phys.B 247 (1984) 484 [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    O. Piguet, K. Sibold and M. Schweda, General solution of the supersymmetry consistency conditions, Nucl. Phys.B 174 (1980) 183 [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    J. Lorenzen and D. Martelli, Comments on the Casimir energy in supersymmetric field theories, JHEP07 (2015) 001 [arXiv:1412.7463] [INSPIRE].
  68. [68]
    C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, arXiv:0707.3702 [INSPIRE].
  69. [69]
    F.A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys.B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  70. [70]
    D. Martelli and J. Sparks, The character of the supersymmetric Casimir energy, JHEP08 (2016) 117 [arXiv:1512.02521] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  72. [72]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP01 (2015) 100 [arXiv:1405.6046] [INSPIRE].
  73. [73]
    M. Honda and Y. Yoshida, Supersymmetric index on T 2× S 2and elliptic genus, arXiv:1504.04355 [INSPIRE].
  74. [74]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A. (1992) [INSPIRE].zbMATHGoogle Scholar
  75. [75]
    G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z) × Z 3, math/9907061.
  76. [76]
    D.B. Ray and I.M. Singer, Analytic torsion for complex manifolds, Annals Math.98 (1973) 154 [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  77. [77]
    D.S. Freed, On determinant line bundles, Conf. Proc.C 8607214 (1986) 189 [INSPIRE].zbMATHGoogle Scholar
  78. [78]
    E. Arbarello et al., Geometry of algebraic curves, vol. 1, Grundlehren der mathematischen Wissenschaften, Springer-Verlag (1985).Google Scholar
  79. [79]
    O. Alvarez and I.M. Singer, Beyond the elliptic genus, Nucl. Phys.B 633 (2002) 309 [hep-th/0104199] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  80. [80]
    N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of Duality Groups and Extended Conformal Manifolds, PTEP2018 (2018) 073B04 [arXiv:1803.07366] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUnited Kingdom
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations