Advertisement

Einstein gravity from ANEC correlators

  • Alexandre Belin
  • Diego M. Hofman
  • Grégoire MathysEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study correlation functions with multiple averaged null energy (ANEC) operators in conformal field theories. For large N CFTs with a large gap to higher spin operators, we show that the OPE between a local operator and the ANEC can be recast as a particularly simple differential operator acting on the local operator. This operator is simple enough that we can resum it and obtain the finite distance OPE. Under the large N - large gap assumptions, the vanishing of the commutator of ANEC operators tightly constrains the OPE coefficients of the theory. An important example of this phenomenon is the conclusion that a = c in d = 4. This implies that the bulk dual of such a CFT is semi-classical Einstein-gravity with minimally coupled matter.

Keywords

AdS-CFT Correspondence Conformal Field Theory Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP 39 (1974) 9] [INSPIRE].Google Scholar
  4. [4]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP04 (2014) 195 [arXiv:1308.3716] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Faulkner et al., Gravitation from entanglement in holographic CFTs, JHEP03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    T. Faulkner et al., Nonlinear gravity from entanglement in conformal field theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP05 (2018) 147 [arXiv:1802.10103] [INSPIRE].ADSzbMATHGoogle Scholar
  11. [11]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk phase shift, CFT Regge limit and Einstein gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP07 (2018) 157 [arXiv:1712.04861] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    C.A. Keller, Phase transitions in symmetric orbifold CFTs and universality, JHEP03 (2011) 114 [arXiv:1101.4937] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    C.A. Keller and A. Maloney, Poincaré series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].ADSzbMATHGoogle Scholar
  20. [20]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    N. Benjamin, S. Kachru, C.A. Keller and N.M. Paquette, Emergent space-time and the supersymmetric index, JHEP05 (2016) 158 [arXiv:1512.00010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    A. Belin et al., Universality of sparse d > 2 conformal field theory at large N, JHEP03 (2017) 067 [arXiv:1610.06186] [INSPIRE].
  23. [23]
    A. Belin, A. Castro, J. Gomes and C.A. Keller, Siegel modular forms and black hole entropy, JHEP04 (2017) 057 [arXiv:1611.04588] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    E. Shaghoulian, Emergent gravity from Eguchi-Kawai reduction, JHEP03 (2017) 011 [arXiv:1611.04189] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys.A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].
  26. [26]
    E. Mefford, E. Shaghoulian and M. Shyani, Sparseness bounds on local operators in holographic CFT d, JHEP07 (2018) 051 [arXiv:1711.03122] [INSPIRE].ADSzbMATHGoogle Scholar
  27. [27]
    A. Belin, A. Castro, J. Gomes and C.A. Keller, Siegel paramodular forms and sparseness in AdS 3/CFT 2, JHEP11 (2018) 037 [arXiv:1805.09336] [INSPIRE].ADSzbMATHGoogle Scholar
  28. [28]
    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    J.D. Qualls, Universal bounds in even-spin CFTs, JHEP12 (2015) 001 [arXiv:1412.0383] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    C.A. Keller, G. Mathys and I.G. Zadeh, Bootstrapping chiral CFTs at genus two, Adv. Theor. Math. Phys.22 (2018) 1447 [arXiv:1705.05862] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].ADSGoogle Scholar
  35. [35]
    N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3 gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    M. Brigante et al., Viscosity bound violation in higher derivative gravity, Phys. Rev.D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
  38. [38]
    M. Brigante et al., The viscosity bound and causality violation, Phys. Rev. Lett.100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].
  39. [39]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP08 (2009) 016 [arXiv:0906.2922] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys.B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].
  41. [41]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys.A 50 (2017) 364001 [arXiv:1703.10656] [INSPIRE].
  44. [44]
    C. Córdova and S.-H. Shao, Light-ray operators and the BMS algebra, Phys. Rev.D 98 (2018) 125015 [arXiv:1810.05706] [INSPIRE].
  45. [45]
    I.I. Balitsky and V.M. Braun, Evolution equations for QCD string operators, Nucl. Phys.B 311 (1989) 541 [INSPIRE].
  46. [46]
    V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    T. Hartman, S. Kundu and A. Tajdini, Averaged null energy condition from causality, JHEP07 (2017) 066 [arXiv:1610.05308] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Hartman, S. Jain and S. Kundu, A new spin on causality constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    A. Zhiboedov, On conformal field theories with extremal a/c values, JHEP04 (2014) 038 [arXiv:1304.6075] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C. Cordova, J. Maldacena and G.J. Turiaci, Bounds on OPE coefficients from interference effects in the conformal collider, JHEP11 (2017) 032 [arXiv:1710.03199] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, superconvergence and a stringy equivalence principle, arXiv:1904.05905 [INSPIRE].
  56. [56]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \)symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    D.M. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys.6 (2019) 006 [arXiv:1802.09512] [INSPIRE].Google Scholar
  59. [59]
    H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett.B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].
  60. [60]
    L.F. Alday, A. Bissi and E. Perlmutter, Holographic reconstruction of AdS exchanges from crossing symmetry, JHEP08 (2017) 147 [arXiv:1705.02318] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.CERN, Theory Division, 1 Esplanade des ParticulesGeneva 23Switzerland

Personalised recommendations