Non-relativistic effective interactions of spin 1 Dark Matter

  • Riccardo Catena
  • Kåre FridellEmail author
  • Martin B. Krauss
Open Access
Regular Article - Theoretical Physics


We investigate the non-relativistic reduction of simplified models for spin 1 dark matter (DM) with the aim of identifying features in the phenomenology of DM-quark interactions which are specific to vector DM. In the case of DM-quark interactions mediated by a spin 1 particle, we find two DM-nucleon interaction operators arising from the non-relativistic reduction of simplified models for spin 1 DM that are specific to spin 1 DM, and which were not considered in previous studies. They are quadratic in the momentum transfer, linear in a symmetric combination of polarisation vectors for the DM particle, and arise from simplified models which do not generate momentum transfer independent operators as leading interactions in the non-relativistic expansion of DM-nucleon scattering amplitudes. Within these simplified models, the new operators cannot be neglected when computing DM signals at direct detection experiments. For example, we find that nuclear recoil energy spectra computed by including or neglecting the new operators can differ by up to one order of magnitude for nuclear recoil energies larger than about 20 keV and DM masses below 50 GeV. Furthermore, the shape of the expected nuclear recoil spectra depends significantly on whether the new operators are taken into account or not. Finally, neglecting the contribution to DM direct detection signals from the new operators leads to inaccurate conclusions when assessing the compatibility of a future direct detection signal with CMB constraints on the DM relic density, especially when the number of signal events is small, e.g. \( \mathcal{O} \)(1).


Beyond Standard Model Cosmology of Theories beyond the SM Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys.90 (2018) 045002 [arXiv:1605.04909].
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  3. [3]
    A. Drukier and L. Stodolsky, Principles and applications of a neutral current detector for neutrino physics and astronomy, Phys. Rev.D 30 (1984) 2295 [INSPIRE].
  4. [4]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev.D 31 (1985) 3059 [INSPIRE].
  5. [5]
    T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys.G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].
  6. [6]
    E. Del Nobile, Complete Lorentz-to-Galileo dictionary for direct dark matter detection, Phys. Rev.D 98 (2018) 123003 [arXiv:1806.01291] [INSPIRE].
  7. [7]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev.C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].
  8. [8]
    L. Vietze et al., Nuclear structure aspects of spin-independent WIMP scattering off xenon, Phys. Rev.D 91 (2015) 043520 [arXiv:1412.6091] [INSPIRE].
  9. [9]
    M. Hoferichter, P. Klos and A. Schwenk, Chiral power counting of one- and two-body currents in direct detection of dark matter, Phys. Lett.B 746 (2015) 410 [arXiv:1503.04811].
  10. [10]
    M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Nuclear structure factors for general spin-independent WIMP-nucleus scattering, Phys. Rev.D 99 (2019) 055031 [arXiv:1812.05617].
  11. [11]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP11 (2010) 042 [arXiv:1008.1591].
  12. [12]
    A.L. Fitzpatrick et al., The effective field theory of dark matter direct detection, JCAP02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Brod, A. Gootjes-Dreesbach, M. Tammaro and J. Zupan, Effective field theory for dark matter direct detection up to dimension seven, JHEP10 (2018) 065 [arXiv:1710.10218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ.9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  15. [15]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J.C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
  16. [16]
    S. Baum, R. Catena and M.B. Krauss, Constraints on simplified models for dark matter from LHC dijet searches, arXiv:1812.01585 [INSPIRE].
  17. [17]
    S. Baum, R. Catena and M.B. Krauss, Impact of a XENONnT signal on LHC dijet searches, JHEP07 (2019) 015 [arXiv:1812.01594].ADSCrossRefGoogle Scholar
  18. [18]
    Physics Letters B746 (2015) 410 [arXiv:1503.04811].
  19. [19]
    F. Bishara, J. Brod, B. Grinstein and J. Zupan, Chiral effective theory of dark matter direct detection, JCAP02 (2017) 009 [arXiv:1611.00368].ADSCrossRefGoogle Scholar
  20. [20]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free dark matter models are not so simple, JHEP08 (2017) 053 [arXiv:1704.03850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Ellis, M. Fairbairn and P. Tunney, Phenomenological constraints on anomaly-free dark matter models, arXiv:1807.02503.
  23. [23]
    A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett.112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP04 (2015) 054 [arXiv:1411.3342].ADSCrossRefGoogle Scholar
  25. [25]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP08 (2016) 111 [arXiv:1605.04917].ADSCrossRefGoogle Scholar
  26. [26]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  27. [27]
    S. Baum et al., Determining dark matter properties with a XENONnT/LZ signal and LHC Run 3 monojet searches, Phys. Rev.D 97 (2018) 083002 [arXiv:1709.06051] [INSPIRE].
  28. [28]
    J.B. Dent, L.M. Krauss, J.L. Newstead and S. Sabharwal, General analysis of direct dark matter detection: From microphysics to observational signatures, Phys. Rev.D 92 (2015) 063515 [arXiv:1505.03117] [INSPIRE].
  29. [29]
    R. Catena, J. Conrad and M.B. Krauss, Compatibility of a dark matter discovery at XENONnT or LZ with the WIMP thermal production mechanism, Phys. Rev.D 97 (2018) 103002 [arXiv:1712.07969] [INSPIRE].
  30. [30]
    R. Catena, K. Fridell and V. Zema, Direct detection of fermionic and vector dark matter with polarised targets, JCAP11 (2018) 018 [arXiv:1810.01515] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys.B 360 (1991) 145 [INSPIRE].
  32. [32]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Riccardo Catena
    • 1
  • Kåre Fridell
    • 1
    • 2
    Email author
  • Martin B. Krauss
    • 1
    • 3
  1. 1.Chalmers University of Technology, Department of PhysicsGöteborgSweden
  2. 2.Fakultät für Physik, Technische Universität MünchenGarchingGermany
  3. 3.Dipartimento di Matematica e FisicaUniversità di Roma TreRomeItaly

Personalised recommendations