Topological charge fluctuations in the Glasma

  • Pablo Guerrero-RodríguezEmail author
Open Access
Regular Article - Theoretical Physics


The early-time evolution of the system generated in ultra-relativistic heavy ion collisions is dominated by the presence of strong color fields known as Glasma fields. These can be described following the classical approach embodied in the Color Glass Condensate effective theory, which approximates QCD in the high gluon density regime. In this framework we perform an analytical first-principles calculation of the two-point correlator of the divergence of the Chern-Simons current at proper time τ = 0+, which characterizes the early fluctuations of axial charge density in the plane transverse to the collision axis. This object plays a crucial role in the description of anomalous transport phenomena such as the Chiral Magnetic Effect. We compare our results to those obtained under the Glasma Graph approximation, which assumes gluon field correlators to obey Gaussian statistics. While this approach proves to be equivalent to the exact calculation in the limit of short transverse separations, important differences arise at larger distances, where our expression displays a remarkably slower fall-off than the Glasma Graph result (1/r4 vs. 1/r8 power-law decay). This discrepancy emerges from the non-linear dynamics mapping the Gaussianly-distributed color source densities onto the Glasma fields, encoded in the classical Yang-Mills equations. Our results support the conclusions reached in a previous work, where we found indications that the color screening of correlations in the transverse plane occurs at relatively large distances.


Heavy Ion Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev.D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
  2. [2]
    F. Lenz, Topological concepts in gauge theories, Lect. Notes Phys.659 (2005) 7 [hep-th/0403286] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:event by event P and CP-violation’, Nucl. Phys.A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].
  4. [4]
    D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisionsa status report, Prog. Part. Nucl. Phys.88 (2016) 1 [arXiv:1511.04050] [INSPIRE].
  5. [5]
    STAR collaboration, Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett.103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].
  6. [6]
    ALICE collaboration, Charge separation relative to the reaction plane in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \)TeV, Phys. Rev. Lett.110 (2013) 012301 [arXiv:1207.0900] [INSPIRE].
  7. [7]
    STAR collaboration, Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett.113 (2014) 052302 [arXiv:1404.1433] [INSPIRE].
  8. [8]
    STAR collaboration, Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett.114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].
  9. [9]
    STAR collaboration, Disentangling flow and signals of chiral magnetic effect in U+U, Au+Au and p+Au collisions, Nucl. Phys.A 967 (2017) 740 [arXiv:1704.03845] [INSPIRE].
  10. [10]
    A. Bzdak, V. Koch and J. Liao, Azimuthal correlations from transverse momentum conservation and possible local parity violation, Phys. Rev.C 83 (2011) 014905 [arXiv:1008.4919] [INSPIRE].
  11. [11]
    S. Schlichting and S. Pratt, Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables, Phys. Rev.C 83 (2011) 014913 [arXiv:1009.4283] [INSPIRE].
  12. [12]
    G.-L. Ma and B. Zhang, Effects of final state interactions on charge separation in relativistic heavy ion collisions, Phys. Lett.B 700 (2011) 39 [arXiv:1101.1701] [INSPIRE].
  13. [13]
    S.A. Voloshin, Parity violation in hot QCD: how to detect it, Phys. Rev.C 70 (2004) 057901 [hep-ph/0406311] [INSPIRE].
  14. [14]
    A. Bzdak, V. Koch and J. Liao, Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect, Lect. Notes Phys.871 (2013) 503 [arXiv:1207.7327] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Wen, J. Bryon, L. Wen and G. Wang, Event-shape-engineering study of charge separation in heavy-ion collisions, Chin. Phys.C 42 (2018) 014001 [arXiv:1608.03205] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H.-J. Xu et al., Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision, Chin. Phys.C 42 (2018) 084103 [arXiv:1710.07265] [INSPIRE].
  17. [17]
    H. Huang et al., Operation of RHIC injectors with isobaric ruthenium and zirconium ions, in Proceedings, 9thInternational Particle Accelerator Conference (IPAC 2018), Vancouver, BC, Canada, (2018), pg. TUPAF006 [INSPIRE].
  18. [18]
    M. Luzum and H. Petersen, Initial state fluctuations and final state correlations in relativistic heavy-ion collisions, J. Phys.G 41 (2014) 063102 [arXiv:1312.5503] [INSPIRE].
  19. [19]
    D. Kharzeev, A. Krasnitz and R. Venugopalan, Anomalous chirality fluctuations in the initial stage of heavy ion collisions and parity odd bubbles, Phys. Lett.B 545 (2002) 298 [hep-ph/0109253] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Mace, S. Schlichting and R. Venugopalan, Off-equilibrium sphaleron transitions in the glasma, Phys. Rev.D 93 (2016) 074036 [arXiv:1601.07342] [INSPIRE].
  21. [21]
    E. Retinskaya, M. Luzum and J.-Y. Ollitrault, Constraining models of initial conditions with elliptic and triangular flow data, Phys. Rev.C 89 (2014) 014902 [arXiv:1311.5339] [INSPIRE].
  22. [22]
    G.M. Newman, Anomalous hydrodynamics, JHEP01 (2006) 158 [hep-ph/0511236] [INSPIRE].
  23. [23]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett.103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett.B 697 (2011) 404 [arXiv:1010.1550] [INSPIRE].
  25. [25]
    H. Weigert, Evolution at small x bj: the color glass condensate, Prog. Part. Nucl. Phys.55 (2005) 461 [hep-ph/0501087] [INSPIRE].
  26. [26]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci.60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev.D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  28. [28]
    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev.D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
  29. [29]
    L.D. McLerran and R. Venugopalan, Greens functions in the color field of a large nucleus, Phys. Rev.D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys.A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].
  31. [31]
    T. Lappi, Energy density of the glasma, Phys. Lett.B 643 (2006) 11 [hep-ph/0606207] [INSPIRE].
  32. [32]
    A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys.A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Fukushima and F. Gelis, The evolving glasma, Nucl. Phys.A 874 (2012) 108 [arXiv:1106.1396] [INSPIRE].
  34. [34]
    J.L. Albacete, P. Guerrero-Rodríguez and C. Marquet, Initial correlations of the glasma energy-momentum tensor, JHEP01 (2019) 073 [arXiv:1808.00795] [INSPIRE].
  35. [35]
    G. Giacalone, P. Guerrero-Rodríguez, M. Luzum, C. Marquet and J.-Y. Ollitrault, New paradigm for fluctuations in heavy-ion collisions, arXiv:1902.07168 [INSPIRE].
  36. [36]
    T. Lappi and S. Schlichting, Linearly polarized gluons and axial charge fluctuations in the glasma, Phys. Rev.D 97 (2018) 034034 [arXiv:1708.08625] [INSPIRE].
  37. [37]
    G. Chen, R.J. Fries, J.I. Kapusta and Y. Li, Early time dynamics of gluon fields in high energy nuclear collisions, Phys. Rev.C 92 (2015) 064912 [arXiv:1507.03524] [INSPIRE].
  38. [38]
    C.S. Lam and G. Mahlon, Color neutrality and the gluon distribution in a very large nucleus, Phys. Rev.D 61 (2000) 014005 [hep-ph/9907281] [INSPIRE].
  39. [39]
    H. Fujii, F. Gelis and R. Venugopalan, Quark pair production in high energy pA collisions: general features, Nucl. Phys.A 780 (2006) 146 [hep-ph/0603099] [INSPIRE].
  40. [40]
    C. Marquet, Forward inclusive dijet production and azimuthal correlations in p(A) collisions, Nucl. Phys.A 796 (2007) 41 [arXiv:0708.0231] [INSPIRE].
  41. [41]
    Y.V. Kovchegov, J. Kuokkanen, K. Rummukainen and H. Weigert, Subleading-N ccorrections in non-linear small-x evolution, Nucl. Phys.A 823 (2009) 47 [arXiv:0812.3238] [INSPIRE].
  42. [42]
    C. Marquet and H. Weigert, New observables to test the color glass condensate beyond the large-N climit, Nucl. Phys.A 843 (2010) 68 [arXiv:1003.0813] [INSPIRE].
  43. [43]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production from non-Abelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev.D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.J. Fries, J.I. Kapusta and Y. Li, Near-fields and initial energy density in the color glass condensate model, nucl-th/0604054 [INSPIRE].
  45. [45]
    E. Iancu, K. Itakura and L. McLerran, A gaussian effective theory for gluon saturation, Nucl. Phys.A 724 (2003) 181 [hep-ph/0212123] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D.E. Kharzeev, Y.V. Kovchegov and E. Levin, Instantons in the saturation environment, Nucl. Phys.A 699 (2002) 745 [hep-ph/0106248] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun.64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun.207 (2016) 432 [arXiv:1601.01167] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Lappi, B. Schenke, S. Schlichting and R. Venugopalan, Tracing the origin of azimuthal gluon correlations in the color glass condensate, JHEP01 (2016) 061 [arXiv:1509.03499] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.CAFPE & Dpto. de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-SaclayPalaiseauFrance

Personalised recommendations