Advertisement

Scalar phenomenology in type-II seesaw model

  • R. Primulando
  • J. Julio
  • P. UttayaratEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In this work we study the viable parameter space of the scalar sector in the type-II seesaw model. In identifying the allowed parameter space, we employ constraints from low energy precision measurements, theoretical considerations and the 125-GeV Higgs data. These tools prove effective in constraining the model parameter space. Moreover, the triplet also offers a rich collider phenomenology from having additional scalars that have unique collider signatures. We find that direct collider searches for these scalars can further probe various parts of the viable parameter space. These parts can be parametrized by the electroweak scalar triplet vacuum expectation value, the mass splitting of the singly- and doubly-charged scalars, and the doubly-charged Higgs mass. We find that different regions of the viable parameter space give rise to different collider signatures, such as the same-sign dilepton, the same-sign W and the multilepton signatures. By investigating various LEP and LHC measurements, we derive the most updated constraints over the whole range of parameter space of the type-II seesaw model.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett.43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a rate of one out of 109muon decays?, Phys. Lett.B 67 (1977) 421.Google Scholar
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  4. [4]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett.B 94 (1980) 61.Google Scholar
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev.D 22 (1980) 2227 [INSPIRE].
  8. [8]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev.D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys.B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev.D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys.B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].
  12. [12]
    M. Muhlleitner and M. Spira, A note on doubly charged Higgs pair production at hadron colliders, Phys. Rev.D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].
  13. [13]
    K.S. Babu and S. Jana, Probing doubly charged Higgs bosons at the LHC through photon initiated processes, Phys. Rev.D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].
  14. [14]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett.B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].
  15. [15]
    J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP03 (2008) 009 [arXiv:0712.1453] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Kadastik, M. Raidal and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev.D 77 (2008) 115023 [arXiv:0712.3912] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana phases and neutrino mass spectrum in the Higgs triplet model at the CERN LHC, Phys. Rev.D 77 (2008) 075010 [arXiv:0712.4019] [INSPIRE].
  18. [18]
    P. Fileviez Perez et al., Neutrino masses and the CERN LHC: testing type II seesaw, Phys. Rev.D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].
  19. [19]
    CMS collaboration, A search for doubly-charged Higgs boson production in three and four lepton final states at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-16-036 (2016).
  20. [20]
    ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
  21. [21]
    A.G. Akeroyd and C.-W. Chiang, Doubly charged Higgs bosons and three-lepton signatures in the Higgs Triplet Model, Phys. Rev.D 80 (2009) 113010 [arXiv:0909.4419] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Kanemura, K. Yagyu and H. Yokoya, First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC, Phys. Lett.B 726 (2013) 316 [arXiv:1305.2383] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Kanemura, M. Kikuchi, K. Yagyu and H. Yokoya, Bounds on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario, Phys. Rev.D 90 (2014) 115018 [arXiv:1407.6547] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Z. Kang et al., Light doubly charged Higgs boson via the WW *channel at LHC, Eur. Phys. J.C 75 (2015) 574 [arXiv:1404.5207] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    ATLAS collaboration, Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector, Eur. Phys. J.C 79 (2019) 58 [arXiv:1808.01899] [INSPIRE].
  26. [26]
    S. Chakrabarti, D. Choudhury, R.M. Godbole and B. Mukhopadhyaya, Observing doubly charged Higgs bosons in photon-photon collisions, Phys. Lett.B 434 (1998) 347 [hep-ph/9804297] [INSPIRE].
  27. [27]
    A.G. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev.D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].
  28. [28]
    A. Melfo et al., Type II seesaw at LHC: the roadmap, Phys. Rev.D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].
  29. [29]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev.D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].
  30. [30]
    A.G. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev.D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].
  31. [31]
    C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev.D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].
  32. [32]
    E.J. Chun and P. Sharma, Same-sign tetra-leptons from type II seesaw, JHEP08 (2012) 162 [arXiv:1206.6278] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E.J. Chun and P. Sharma, Search for a doubly-charged boson in four lepton final states in type-II seesaw, Phys. Lett.B 728 (2014) 256 [arXiv:1309.6888] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Z.-L. Han, R. Ding and Y. Liao, LHC phenomenology of type II seesaw: nondegenerate case, Phys. Rev.D 91 (2015) 093006 [arXiv:1502.05242] [INSPIRE].
  35. [35]
    Z.-L. Han, R. Ding and Y. Liao, LHC phenomenology of the type-II seesaw mechanism: observability of neutral scalars in the nondegenerate case, Phys. Rev.D 92 (2015) 033014 [arXiv:1506.08996] [INSPIRE].
  36. [36]
    A.G. Akeroyd, S. Moretti and H. Sugiyama, Five-lepton and six-lepton signatures from production of neutral triplet scalars in the Higgs Triplet Model, Phys. Rev.D 85 (2012) 055026 [arXiv:1201.5047] [INSPIRE].
  37. [37]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys.B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Mitra, S. Niyogi and M. Spannowsky, Type-II seesaw model and multilepton signatures at hadron colliders, Phys. Rev.D 95 (2017) 035042 [arXiv:1611.09594] [INSPIRE].
  39. [39]
    P.S. Bhupal Dev and Y. Zhang, Displaced vertex signatures of doubly charged scalars in the type-II seesaw and its left-right extensions, JHEP10 (2018) 199 [arXiv:1808.00943] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Du, A. Dunbrack, M.J. Ramsey-Musolf and J.-H. Yu, Type-II seesaw scalar triplet model at a 100 TeV pp collider: discovery and Higgs portal coupling determination, JHEP01 (2019) 101 [arXiv:1810.09450] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Antusch, O. Fischer, A. Hammad and C. Scherb, Low scale type-II seesaw: present constraints and prospects for displaced vertex searches, JHEP02 (2019) 157 [arXiv:1811.03476] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
  43. [43]
    L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev.D 49 (1994) 1409 [hep-ph/9309262] [INSPIRE].
  44. [44]
    E.J. Chun, H.M. Lee and P. Sharma, Vacuum stability, perturbativity, EWPD and Higgs-to-diphoton rate in type II seesaw models, JHEP11 (2012) 106 [arXiv:1209.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  46. [46]
    A. Arhrib et al., Higgs boson decay into 2 photons in the type II seesaw model, JHEP04 (2012) 136 [arXiv:1112.5453] [INSPIRE].
  47. [47]
    A.G. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs triplet model, Phys. Rev.D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].
  48. [48]
    P.S. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs boson and the type-II seesaw model, JHEP03 (2013) 150 [Erratum ibid.05 (2013) 049] [arXiv:1301.3453] [INSPIRE].
  49. [49]
    D. Das and A. Santamaria, Updated scalar sector constraints in the Higgs triplet model, Phys. Rev.D 94 (2016) 015015 [arXiv:1604.08099] [INSPIRE].
  50. [50]
    C. Bonilla, R.M. Fonseca and J.W.F. Valle, Consistency of the triplet seesaw model revisited, Phys. Rev.D 92 (2015) 075028 [arXiv:1508.02323] [INSPIRE].
  51. [51]
    A.G. Akeroyd and C.-W. Chiang, Phenomenology of large mixing for the CP-even neutral scalars of the Higgs triplet model, Phys. Rev.D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Dey, A. Kundu and B. Mukhopadhyaya, Some consequences of a Higgs triplet, J. Phys.G 36 (2009) 025002 [arXiv:0802.2510] [INSPIRE].
  53. [53]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  54. [54]
    I. Esteban et al., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23, δ CPand the mass ordering, JHEP01 (2019) 106 [arXiv:1811.05487] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P.F. de Salas et al., Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett.B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν einteractions at the far detector, Phys. Rev.D 96 (2017) 092006 [Erratum ibid.D 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
  57. [57]
    T2K collaboration, Search for CP-violation in neutrino and antineutrino oscillations by the T2K experiment with 2.2 × 1021protons on target, Phys. Rev. Lett.121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
  58. [58]
    NOvA collaboration, Constraints on oscillation parameters from ν eappearance and ν μdisappearance in NOvA, Phys. Rev. Lett.118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  59. [59]
    NOvA collaboration, New constraints on oscillation parameters from ν eappearance and ν μdisappearance in the NOvA experiment, Phys. Rev.D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  60. [60]
    A. Arhrib et al., The Higgs potential in the type II seesaw model, Phys. Rev.D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].
  61. [61]
    K.S. Babu, I. Gogoladze and S. Khan, Radiative electroweak symmetry breaking in standard model extensions, Phys. Rev.D 95 (2017) 095013 [arXiv:1612.05185] [INSPIRE].
  62. [62]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [INSPIRE].
  63. [63]
    D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev.D 7 (1973) 3111 [INSPIRE].ADSGoogle Scholar
  64. [64]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J.C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  65. [65]
    D. Carmi et al., Higgs after the discovery: a status report, JHEP10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgs’ face, JHEP12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1of pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
  68. [68]
    CMS collaboration, Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 185 [arXiv:1804.02716] [INSPIRE].
  69. [69]
    ATLAS collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev.D 97 (2018) 072003 [arXiv:1712.08891] [INSPIRE].
  70. [70]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  71. [71]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
  72. [72]
    ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a \( b\overline{b} \)pair in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].
  73. [73]
    CMS collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, Phys. Lett.B 780 (2018) 501 [arXiv:1709.07497] [INSPIRE].
  74. [74]
    CMS collaboration, Search for \( t\overline{t}H \)production in the H → \( b\overline{b} \)decay channel with leptonic \( t\overline{t} \)decays in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2019) 026 [arXiv:1804.03682] [INSPIRE].
  75. [75]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett.B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  76. [76]
    CMS collaboration, Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons and hadronically decaying τ leptons at \( \sqrt{s} \) = 13 TeV, JHEP08 (2018) 066 [arXiv:1803.05485] [INSPIRE].
  77. [77]
    CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP11 (2015) 018 [arXiv:1508.07774] [INSPIRE].
  78. [78]
    CMS collaboration, Search for charged Higgs bosons with the H ±τ ±ν τdecay channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP07 (2019) 142 [arXiv:1903.04560].
  79. [79]
    CMS collaboration, Search for charged Higgs bosons with the H ±τ ±ν τdecay channel in the fully hadronic final state at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-14-020 (2014).
  80. [80]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ±ν τin the τ +jets and τ +lepton final states with 36 fb −1of pp collision data recorded at \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, JHEP09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  81. [81]
    ATLAS collaboration, Search for charged Higgs bosons decaying into top and bottom quarks at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP11 (2018) 085 [arXiv:1808.03599] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 787 (2018) 68 [arXiv:1806.01532] [INSPIRE].
  83. [83]
    CMS collaboration, Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.119 (2017) 141802 [arXiv:1705.02942] [INSPIRE].
  84. [84]
    CMS collaboration, Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP11 (2018) 115 [arXiv:1808.06575] [INSPIRE].
  85. [85]
    CMS collaboration, Search for a light charged Higgs boson decaying to \( c\overline{s} \)in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP12 (2015) 178 [arXiv:1510.04252] [INSPIRE].
  86. [86]
    ATLAS collaboration, Search for a light charged Higgs boson in the decay channel H + \( c\overline{s} \)in \( t\overline{t} \)events using pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J.C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  88. [88]
    CMS collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
  89. [89]
    ATLAS collaboration, Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb −1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 052008 [arXiv:1808.02380] [INSPIRE].
  90. [90]
    CMS collaboration, Search for beyond the standard model Higgs bosons decaying into a \( b\overline{b} \)pair in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP08 (2018) 113 [arXiv:1805.12191] [INSPIRE].
  91. [91]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  92. [92]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  93. [93]
    D. Dercks et al., CheckMATE 2: from the model to the limit, Comput. Phys. Commun.221 (2017) 383 [arXiv:1611.09856] [INSPIRE].
  94. [94]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s} \) = 7, 8 and 13 TeV, JHEP02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  95. [95]
    ATLAS collaboration, Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP01 (2016) 172 [arXiv:1508.07869] [INSPIRE].
  96. [96]
    ATLAS collaboration, Search for invisible Higgs boson decays in vector boson fusion at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett.B 793 (2019) 499 [arXiv:1809.06682] [INSPIRE].
  97. [97]
    CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
  98. [98]
    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP01 (2018) 126 [arXiv:1711.03301] [INSPIRE].
  99. [99]
    ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP01 (2018)126 [arXiv:1711.03301] [INSPIRE].
  100. [100]
    CMS collaboration, Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev.D 98 (2018) 112014 [arXiv:1808.03124] [INSPIRE].
  101. [101]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J.C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
  102. [102]
    OPAL collaboration, Search for chargino and neutralino production at \( \sqrt{s} \) = 189 GeV at LEP, Eur. Phys. J.C 14 (2000) 187 [Erratum ibid.C 16 (2000) 707] [hep-ex/9909051] [INSPIRE].
  103. [103]
    OPAL collaboration, Search for chargino and neutralino production at \( \sqrt{s} \) = 192 GeV to 209 GeV at LEP, Eur. Phys. J.C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of PhysicsParahyangan Catholic UniversityBandungIndonesia
  2. 2.Indonesian Institute of Sciences (LIPI)TangerangIndonesia
  3. 3.Department of PhysicsSrinakharinwirot UniversityBangkokThailand

Personalised recommendations