Three-dimensional finite temperature Z2 gauge theory with tensor network scheme
Abstract
We apply a tensor network scheme to finite temperature Z2 gauge theory in 2+1 dimensions. Finite size scaling analysis with the spatial extension up to Nσ = 4096 at the temporal extension of Nτ = 2, 3, 5 allows us to determine the transition temperature and the critical exponent ν at high level of precision, which shows the consistency with the Svetitsky-Yaffe conjecture.
Keywords
Duality in Gauge Field Theories Lattice QCD Download
to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys. Soc. Jpn.65 (1996) 891.ADSCrossRefGoogle Scholar
- [2]N. Maeshima, Y. Hieida, Y. Akutsu, T. Nishino and K. Okunishi, Vertical density matrix algorithm: a higher dimensional numerical renormalization scheme based on the tensor product state ansatz, Phys. Rev.E 64 (2001) 016705 [cond-mat/0101360] [INSPIRE].ADSGoogle Scholar
- [3]M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett.99 (2007) 120601 [cond-mat/0611687] [INSPIRE].ADSCrossRefGoogle Scholar
- [4]Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry protected topological order, Phys. Rev.B 80 (2009) 155131 [arXiv:0903.1069] [INSPIRE].ADSCrossRefGoogle Scholar
- [5]Y. Shimizu, Tensor renormalization group approach to a lattice boson model, Mod. Phys. Lett.A 27 (2012) 1250035 [INSPIRE].ADSCrossRefGoogle Scholar
- [6]Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev.D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].ADSGoogle Scholar
- [7]Z.-C. Gu, F. Verstraete and X.-G. Wen, Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states, arXiv:1004.2563 [INSPIRE].
- [8]Z.-C. Gu, Efficient simulation of Grassmann tensor product states, Phys. Rev.B 88 (2013) 115139 [arXiv:1109.4470] [INSPIRE].ADSCrossRefGoogle Scholar
- [9]Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev.D 90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].ADSGoogle Scholar
- [10]Y. Shimizu and Y. Kuramashi, Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion, Phys. Rev.D 97 (2018) 034502 [arXiv:1712.07808] [INSPIRE].ADSGoogle Scholar
- [11]S. Takeda and Y. Yoshimura, Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential, Prog. Theor. Exp. Phys.2015 (2015) 043B01.CrossRefGoogle Scholar
- [12]D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor network formulation for two-dimensional lattice N = 1 Wess-Zumino model, JHEP03 (2018) 141 [arXiv:1801.04183] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [13]R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for relativistic fermion systems, Prog. Theor. Exp. Phys.2017 (2017) 063B07 [arXiv:1705.07764] [INSPIRE].Google Scholar
- [14]Y. Yoshimura, Y. Kuramashi, Y. Nakamura, S. Takeda and R. Sakai, Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group, Phys. Rev.D 97 (2018) 054511 [arXiv:1711.08121] [INSPIRE].ADSMathSciNetGoogle Scholar
- [15]Y. Liu et al., Exact blocking formulas for spin and gauge models, Phys. Rev.D 88 (2013) 056005 [arXiv:1307.6543] [INSPIRE].ADSGoogle Scholar
- [16]B. Dittrich, F.C. Eckert and M. Martin-Benito, Coarse graining methods for spin net and spin foam models, New J. Phys.14 (2012) 035008 [arXiv:1109.4927] [INSPIRE].ADSCrossRefGoogle Scholar
- [17]B. Dittrich and F.C. Eckert, Towards computational insights into the large-scale structure of spin foams, J. Phys. Conf. Ser.360 (2012) 012004 [arXiv:1111.0967] [INSPIRE].CrossRefGoogle Scholar
- [18]B. Dittrich, S. Mizera and S. Steinhaus, Decorated tensor network renormalization for lattice gauge theories and spin foam models, New J. Phys.18 (2016) 053009 [arXiv:1409.2407] [INSPIRE].ADSCrossRefGoogle Scholar
- [19]M. Caselle and M. Hasenbusch, Deconfinement transition and dimensional crossover in the 3D gauge Ising model, Nucl. Phys.B 470 (1996) 435 [hep-lat/9511015] [INSPIRE].ADSCrossRefGoogle Scholar
- [20]B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions, Nucl. Phys.B 210 (1982) 423 [INSPIRE].ADSCrossRefGoogle Scholar
- [21]Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining renormalization by higher-order singular value decomposition, Phys. Rev.B 86 (2012) 045139.ADSCrossRefGoogle Scholar
Copyright information
© The Author(s) 2019