Advertisement

Weak gravity conjecture, black hole entropy, and modular invariance

  • Lars AalsmaEmail author
  • Alex Cole
  • Gary Shiu
Open Access
Regular Article - Theoretical Physics

Abstract

In recent literature, it has been argued that a mild form of the Weak Gravity Conjecture (WGC) is satisfied by wide classes of effective field theories in which higher-derivative corrections can be shown to shift the charge-to-mass ratios of extremal black holes to larger values. However, this mild form does not directly constrain low-energy physics because the black holes satisfying the WGC have masses above the cutoff of the effective theory. In this note, we point out that in string theory modular invariance can connect a light superextremal state to heavy superextremal states; the latter collapse into black holes at small string coupling. In the context of heterotic string theory, we show that these states are black holes that have α′-exact charge-to-mass ratios exceeding the classical extremality bound. This suggests that modular invariance of the string partition function can be used to relate the existence of a light superextremal particle to the positive shift in charge-to-mass ratio of extremal black holes.

Keywords

Black Holes in String Theory Effective Field Theories Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  4. [4]
    E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP10 (2016) 159 [arXiv:1606.08438] [INSPIRE].
  7. [7]
    B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys.66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP12 (2007) 068 [hep-th/0606100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Cheung, J. Liu and G.N. Remmen, Proof of the weak gravity conjecture from black hole entropy, JHEP10 (2018) 004 [arXiv:1801.08546] [INSPIRE].
  11. [11]
    Y. Hamada, T. Noumi and G. Shiu, Weak gravity conjecture from unitarity and causality, Phys. Rev. Lett.123 (2019) 051601 [arXiv:1810.03637] [INSPIRE].
  12. [12]
    B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, arXiv:1902.03250 [INSPIRE].
  13. [13]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
  14. [14]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP08 (2015) 032 [arXiv:1503.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE].
  16. [16]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP04 (2016) 017 [arXiv:1504.00659] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture, JHEP10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.-J. Lee, W. Lerche and T. Weigand, Emergent strings, duality and weak coupling limits for two-form fields, arXiv:1904.06344 [INSPIRE].
  20. [20]
    C. Cheung, J. Liu and G.N. Remmen, Entropy bounds on effective field theory from rotating dyonic black holes, Phys. Rev.D 100 (2019) 046003 [arXiv:1903.09156] [INSPIRE].
  21. [21]
    P.A. Cano and A. Ruipérez, Leading higher-derivative corrections to Kerr geometry, JHEP05 (2019) 189 [arXiv:1901.01315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H.S. Reall and J.E. Santos, Higher derivative corrections to Kerr black hole thermodynamics, JHEP04 (2019) 021 [arXiv:1901.11535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett.B 184 (1987) 191 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, arXiv:1901.08065 [INSPIRE].
  25. [25]
    N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].
  26. [26]
    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev.D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys.B 335 (1990) 138 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].
  29. [29]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett.A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.T. Horowitz and J. Polchinski, Selfgravitating fundamental strings, Phys. Rev.D 57 (1998) 2557 [hep-th/9707170] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav.40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett.94 (2005) 241301 [hep-th/0409148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP07 (2005) 073 [hep-th/0505122] [INSPIRE].
  34. [34]
    P.A. Cano, P.F. Ramírez and A. Ruipérez, The small black hole illusion, arXiv:1808.10449 [INSPIRE].
  35. [35]
    P.A. Cano et al., Beyond the near-horizon limit: stringy corrections to heterotic black holes, JHEP02 (2019) 192 [arXiv:1808.03651] [INSPIRE].
  36. [36]
    K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys.B 517 (1998) 179 [hep-th/9711138] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, String theory effects on five-dimensional black hole physics, Int. J. Mod. Phys.A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP01 (2006) 022 [hep-th/0508218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP09 (2005) 034 [hep-th/0506176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett.B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].
  43. [43]
    E. Halyo, B. Kol, A. Rajaraman and L. Susskind, Counting Schwarzschild and charged black holes, Phys. Lett. B401 (1997) 15 [hep-th/9609075] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Dabholkar, Microstates of nonsupersymmetric black holes, Phys. Lett.B 402 (1997) 53 [hep-th/9702050] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Dabholkar, G. Mandal and P. Ramadevi, Nonrenormalization of mass of some nonsupersymmetric string states, Nucl. Phys.B 520 (1998) 117 [hep-th/9705239] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett.43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    M. Montero, A holographic derivation of the weak gravity conjecture, JHEP03 (2019) 157 [arXiv:1812.03978] [INSPIRE].
  48. [48]
    G. Shiu, P. Soler and W. Cottrell, Weak gravity conjecture and extremal black holes, Sci. China Phys. Mech. Astron.62 (2019) 110412 [arXiv:1611.06270] [INSPIRE].
  49. [49]
    A. Giveon, D. Gorbonos and M. Stern, Fundamental strings and higher derivative corrections to d-dimensional black holes, JHEP02 (2010) 012 [arXiv:0909.5264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Montero and G. Shiu, work in progress.Google Scholar
  51. [51]
    D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys.B 550 (1999) 183 [hep-th/9812027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    N. Arkani-Hamed, Positive geometry of effective field theory, talk given at CERN Winter School on Supergravity, Strings and Gauge Theory, February 4–8, CERN, Geneva, Switzerland (2019).Google Scholar
  53. [53]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhysicsUniversity of WisconsinMadisonU.S.A.

Personalised recommendations